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FINAL PROGRESS REPORT 

ARMY RESEARCH OFFICE GRANT DAAD19-99-1-0265 

Theory and modeling of disordered materials: 
Evaluating the challenges for the future 

Workshop 

Summary and Objective 
Structural and chemical disorder form the cornerstone of modern 

engineering materials. With the support of the Army Research Office a 

workshop was held that brought together experimentalists and theorists 

that work on various forms of disorder in metals, oxides and 

semiconductors. The workshop, held from June 20-24, 1999 in 

Oranjestad, Aruba, assessed the state-of-the-art of the field and provided a 

clearer picture of the challenge and possibilities ahead. Proceedings have 

been published in Modeling and Simulation in Materials Science and 
Engineering. 

Workshop, Attendees and Proceedings 

Fourty-two reserachers from the US, Europe and Asia attended the workshop and 

most stayed for the full four-day program. Presentations covered a wide range of 

materials, from metals to semiconductors and oxides. Configurational disorder as well as 

topological disorder was covered, with a substantial interest in amorphous materials and 

liquids. Some discussions took place on how regular first principles alloy theory 

(currently almost exclusively used for crystalline materials) could be used to study liquids 

or metallic glasses. The interaction between experimentalists such as Bill Johnson, 
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Ricardo Schwartz, Saboungi, Loiseau, Moss, Ardell, Price and theorists led to the 

definition of several interesting problems for the future. A follow-up workshop will be 

held in Sepember 2001 and will be organized by Dr Alphonse Finel (ONERA, France), 

Dr. Ben Burton (NIST) and Dr. Duane Johnson (University of Illinois). 

Attendees: 

Alan Ardell, Mark Asta, Ben Burton, John Cahn, Gerd Ceder, Catherine Colinet, Didier 
de Fontaine, Stefano de Gironcoli, Hugues Dreysse, Francois Ducastelle, Alphonse 
Finel, Mike Finnis, Brent Fultz, Jeff Hoyt, Bill Johnson, Duane Johnson, Rio Kikuchi, 
Annick Loiseau, Tetsuo Mohri, Dane Morgan, Simon Moss, Alain Pasturel, David Price, 
Andrew Quong, Marie-Louise Saboungi, Juan Sanchez, Ricardo Schwarz, Marcel Sluiter, 
Patrice Turchi, Chris Wolverton, Don Nicholson, Harry Cook, Mathias Ekman, Kristin 
Einarsdotter, Cecile Berne, Alex Legris, David Stepp, Eric Wu, Anton Van der Ven, 
Chris Marianetti, Axel van de Walle, 

Proceedings: 
Two copies are attached 

Workshop Program: 

Sunday, June 20th 

6:30-8:00 p.m.   Reception and Registration 

Monday, June 21st m 
8:50-9:00 a.m.   Welcome and Opening Remarks 

Alloy Phase Stability (Chair - D. de Fontaine) 
9:00-9:45 J. Sanchez, "Computation of Phase Diagrams: From First Principles to 

Phenomenology" 
9:45-10:30        P. Turchi, "Ab initio Prediction of Phase Diagrams and Beyond" 

10:30-10:50      Coffee Break 

Surface Alloys (Chair - P. Turchi) 
10:50-11:35      M. Asta, "Thermodynamics of Metallic Surface-Alloy Formation" 
11:35-12:20      S. Moss (with H. Trenkler), "X-ray Studies of Order-Disorder in V2H: from a 

Continuous Transition in the Surface 'Skin' to a First Order Transition in 
the Bulk" 

12:20-2:00        Lunch 

2:00-2:45 H. Dreysse (with L. Wille), "Surface Segregation and Heteroepitaxial Growth 
in Metallic Alloys" 



Alloy Microstructure (Chair - J. Cahn) 
2:45-3:30 A. Ardell, "The Ni-Ni3Al Phase Diagram: The Last Word" 
3:30-4:15 C. Wolverton, "First-Principles Theory of Large-Scale, Coherent Alloy 
Morphologies" 

4:15-4:35 Coffee Break 

4:35-5:20 A. Finel, "Dynamical Evolution of Microstructures with Elastic Effects: Phase 
Field and Atomistic Methods" 

5:20-6:05 A. Loiseau, "Order-Disorder Phase Transformations in Co-Pt: Wetting and 
Development of a Chess-Board Like Microstructure" 

6:05-6:50 A. Pasturel, "Ab Initio Study of Transitory Metastable Phases Solidified by 
Drop-tube Processing" 

Tuesday, June 22nd 

Vibrations in Alloys (Chair - F. Ducastelle) 
9:00-9:45 B. Fultz, "Vibrational Entropies of Alloy Phases" 
9:45-10:30        A. Quong, "The Effect of Vibrational Entropy on the Dilute Heats of Solutions 
of 

Impurities in Al" 

10:30-10:50      Coffee Break 

10:50-11:35      D. Morgan (with A. van de Walle and G. Ceder), "Lattice Vibrations and Alloy 
Thermodynamics" 

Amorphous and Liquid Alloys (Chair - M. Asta) 
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6:35-7:20 R. Schwartz, "Lattice Disordering and Amorphization of Intermetallics Caused 
by Hydrogen Absorption" 
7:20-8:05 M. Saboungi, "Clusters or Networks in Zintl Alloys: Thermodynamics and 
Structure" 

Wednesday, June 23rd Caribbean Room 

Electronic Properties (Chair - D. Johnson) 



9:00-9:45 S. de Gironcoli, "Structural and Electronic Properties of Wide Gap 
Semiconductor Alloys" 

9:45-10:30        D. Nicholson, "Electron and Positron States in Amorphous NiPdP" 

10:30-10:50      Coffee Break 

Oxide Alloys (Chair - D. Price) 
10:50-11:35       G. Ceder, "Challenges for Ab-Initio Alloy Theory in Oxides" 
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Preface 

Structural and chemical disorder are part of almost any engineering material. Their detailed 
characterization with theoretical and experimental approaches therefore forms the cornerstone 
of modern materials science and engineering. To assess the state of this field, the Workshop on 
Thermodynamic and Structural Properties of Alloy Materials was held on 20-24 June 1999 at 
the Sonesta Hotel in Oranjestad, Aruba. The workshop brought together experimentalists and 
theorists in the fields of metals, oxides and semiconductors. Particular emphasis was placed 
on efforts to transfer the success of first-principles modelling of configurational disorder to 
topological disorder, as occurs in metallic glasses and liquids. Fittingly, the workshop was 
dedicated to Professor de Fontaine of the University of California at Berkeley, whose influence 
on the field of order-disorder reactions and first-principles phase diagram calculations has 
been of key importance to the development of the subject. 

The organizers would like to thank the Army Research Office for financial support and the 
editorial staff of Modelling and Simulation in Materials Science and Engineering for working 
with us patiently on these proceedings. 

Mark Asta, Northwestern University 
Gerbrand Ceder, Massachusetts Institute of Technology 
Chris Wolverton, Ford Motor Company 
Conference Organizers 
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Long-range versus short-range interactions and the 
configurational energies of Ba(£, Bf)03 and Pb(#, B')03 

perovskites 

B P Burton 
Materials Science and Engineering Laboratory, Ceramics Division, 
National Institute of Standards and Technology, Gaithersburg MD 20899, USA 

Received 16 September 1999, accepted for publication 7 November 1999 

Abstract. Total energy calculations were performed for three perovskite related ordered 
supercells in several stoichiometries of A (B, B')03; where A is Pb2+ or Ba2+; B is Mg2+, Zn2+, Sc3+ 

orIn3+;andß'isNb5+,Ta5+orW6+. A striking difference between the Pb and Ba(ß, ß')C>3 systems 
is that the differences in total energies for Pb-systems span ranges that are consistently smaller than 
those of the Ba systems. This indicates a reduction in the energetic barriers to disordering in the 
Pb-systems, which is consistent with experimental observations of consistently higher transition 
temperatures in the Ba-systems. This trend is explained as a consequence of enhanced Pb-0 
bonding to underbonded oxygens in B2+-0-B2+ and ß3+-0-ß3+ environments. 

1. Introduction 

Lead-based A(B, B')03 perovskites (A is Pb2+ or Ba2+; B is Mg2+, Zn2+, Sc3+ or In3+; and 
B is Nb5+, Ta5+ or W6+) are widely used as relaxor ferroelectric [1-3] transducers, actuators 
and multilayer capacitors. Their Ba(ß, B')03 counterparts, particularly Ba(Zni/3Ta2/3)03, 
are the premier dielectric resonator materials [4]. Some cation disorder is essential to obtain 
the relaxor properties of the Pb systems [1,2], but disorder in the Ba systems can degrade 
the dielectric 'quality factor' by orders of magnitude [5,6]. As indicated by the experimental 
data summarized in table 1, B-site ordering in A(B, B')03 perovskites persists to higher 
temperatures when the A cation is Ba2+ rather than Pb2+, especially in the A{BißB'2/1)0-i 
systems [5,7-12,15-17]. Clearly, the energetics of ß-site ordering are dramatically altered 
by substituting Pb for Ba on the A sites, and it is not obvious why this should occur. The results 
presented below suggest that this surprising trend is caused by enhanced Pb-0 hybridization 
between the Pb 6s and the O 2p states of underbonded oxygens in B2+-0-B2+ or ß3+-0-ß3+ 

environments. This interaction has an inherently many-body character because it depends upon 
the configuration of the eight ß-site ions that surround an A site. The local symmetry of the 
ß-site configuration dictates that some configurations are conducive to Pb-0 bond relaxation 
and others are not. 

All of the Ba(ßi/3ß2/3)03 systems, adopt the 1:2 crystal structure at low temperatures 
(a B:B':B' layer sequence perpendicular to the cubic [111] vector, ([lll]c)), but the only 
Pb(ßi/3ß2/3)03 system that exhibits long-range order is Pb(Mg1/3Ta2/3)03. When maximally 
ordered, the 1:1 structure with Pb(Mg1/3Ta2/3)03 stoichiometry, has two B sites: one occupied 
by Ta and the other by a disordered Mg2/3Tai/3 mixture. Thus, the 1:1 structure is a 
partially ordered, intermediate-temperature phase rather than the Pb(Mg1/3, Ta2/3)03 (PMT) 

0965-0393/00/030211 +09$30.00    © 2000IOP Publishing Ltd 211 
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Table 1. Experimental data on ordering in A(B ß')03 perovskites. 

System Abbreviation Observed ordering Transition temperature Ref. 

Pb(Zni/3,Nb2/3)03 PZN 1:1 Short-range order [7] 
Pb(Mgl/3,Nb2/3)03 PMN 1:1 Short-range order [8,9] 
Pb(Zn1/3,Ta2/3)03 PZT ? [18] 
Pb(Mgl/3,Ta2/3)03 PMT 1:1^ Disordered 1350°C < r,a < 1400"C [101 
Ba(Zni/3,Nb2/3)03 BZN 1:2 ^ Disordered 1300 °C < T, < 1350°C [15,16] 
Ba(Mgl/3,Nb2/3)03 BMN 1:2 =± Disordered 1350°C < I, < 1400 °C [10] 
Ba(Zni/3,Ta2/3)03 BZT 1:2 == Disordered 7i ^ 1650°C [5] 
Ba(Mg|/3,Ta2/3)03 BMT 1:2 == Disordered 7] % 1655 °C [17] 

Pb(Sci/2,Nbi/2)03 PSN 1:1 ^ Disordered 1200°C < r, < 1220X [19] 
Pb(Scl/2,Ta,/2)03 PST 1:1== Disordered 1400 °C < r, < 1560 "C [2,20] 
Pb(In1/2,Nb1/2)03 PIN 1:1 ^ Disordered 920 °C < 7, < 950 °C [11,12] 
Pb(In1/2,Ta1/2)03 PIT 1:1 == Disordered 1070°c < r, < noo°c [13,14] 
Ba(Scl/2,Nb,/2)03 BSN 1:1 == Disordered 1400 °c < r, [21] 
Ba(Scl/2,Tai/2)03 BST 1:1;=: Disordered 1400 °c < r, [21] 
Ba(Ini/2, Nb|/2)03 BIN 1:1 1200°C < 7, < I400°C [22,231 
Ba(Ini/2,Tai/2)03 BIT 1:1 1200°C < T, < 1650°C [22.24] 

Pb(Mg1/2,WI/2)03 PMW 1:1 7 [22] 
Ba(Mgl/2,W1/2)03 BMW 1:1 7 [22] 

Pb(Sc2/3,W,/3)03 PSW 1:1 melts incongruently at 970 °C [25] 
Ba(Sc2/3,W|/3)03 BSW 1:1 noox < r, [26] 

a 7] is the cation order-disorder transition temperature. 

ground state (GS); Ba(Sc2/3, W1/3)03 also exhibits the partially ordered 1:1 structure, as do 
many other A(Z?2/3, 5w3)03 perovskites with stoichiometries not considered here [22]. For 
the A(B\ß, ß|,2)03 systems, stoichiometry is consistent with a 1:1 GS, and both Ba and 
Pb systems adopt the 1:1 structure at low temperatures, and the Ba(B1/2, B|/2)03 systems 
consistently exhibit higher cation order-disorder transition temperatures [10,19,21]. The 
A(Mg1/2, Wi/2)03 systems also exhibit the 1:1 structure, but no transition temperatures have 
been reported; given the large difference in formal charges, Mg2+ against W6+, it seems likely 
that these phases will melt before disordering. 

2. Total energy calculations 

The total energies were calculated for three 15-atom perovskite-based superstructures in each 
of the eight possible stoichiometries of A{B\/T,B'2,T)OT„ where A is Pb or Ba; B is Mg or Zn; 
and B' is Nb orTa (figure 1). The three AiBtßByJOi, superstructures ([111]1:2, [110]l:2 and 
[001] 1:2) are derived from ideal perovskite by adding a (B:B':B') layer sequence perpendicular 
to [lll]c, [110]c- and [001],., respectively. Calculations were also performed for the eight 
A{B\ßB[J2)OT, stoichiometries in which A is Pb or Ba; B is Sc or In; and B' is Nb or Ta 
(figure 2). The three ten-atom A{B\/2B\/2)03 superstructures, [111]1:|, [110Ji:i and [001]1:l, 
are derived by adding B:B' layer sequences perpendicular to [111],., [110]r and [001],.. All 
calculations were performed with the Vienna ab initio simulation program (VASP) [27] using 
ultrasoft Vanderbilt-type [28] plane-wave pseudopotentials with a local density approximation 
for exchange and correlation energies. Electronic degrees of freedom were optimized with a 
conjugate gradient algorithm, and both cell constant and ionic positions were fully relaxed; 
ferroelastic acentric relaxations were not investigated. Valence electron configurations for the 
pseudopotentials are: Pb, 5d106p26s2 (Pbd version); Ba, 5p66s2; Mg. 2p63s2; Zn, 3d,04s2; 
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Figure 2. Total energies, relative to £[iii]H, for A(B\ßB[ ,2)Oi perovskite-based supercells. 

Sc, 3p63d4s2; In, 4d105s25p1; Nb, 4p65s4d4; Ta, 5d36s2; W, 5d46s; O 2p6. An energy cut-off 
of 395.7 eV was used, in the 'high-precision' option which guarantees that absolute energies 
are converged to within a few millielectronvolts (a few tenths of a kilojoule per mole; one mole 
of ABO3). To promote cancellation of errors, the formation energies for the ABO3 and AB'O?, 
reference states are calculated for each supercell with K-point meshes: 5x5x4,4x4x10 and 
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6 x 6 x 2for [lll]i;2, [110]j:2 and [001]i:2 superstructures, respectively; 4x4x4, 7x7x 10 
and 8 x 8 x 4 for [111]1:1, [110]]:1 and [001],:l, respectively. 

The total energies for A (Bi/^By^O^ supercells, relative to Z^ni],,, are plotted in figure 1 
with the corresponding supercell energies calculated with the ionic model of Bellaiche and 
Vanderbilt (BV) [29], in which 

E = E AqiAqr 
2€üf^   \l-l'\ 

(1) 
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Figure 6.   A£ against the concentration of underbonded oxygens in the [lll]i:i, [ 110]i:i and 
[001]i:i supercells. 

where E is the total energy; e is the electron charge; e is an electronic dielectric constant (e = 10 
for AiBißBy^Oi and e = 5 for A(Sci/25j/2)03); a is the lattice constant (a = 4.07 A)t; 

t For ^(^1/3^2/3)03 systems a = 7.7 a.u. and € = 10 as in BV. For A(ßi/3ß2/3)C>3 systems € = 5 so that 
AE[ooi]1:1 * E(BSN)mh.A & E(BST)m]l:l. 
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Aqi is the difference in charge between the ion at site / and the average ß-site charge of +4, 
i.e. Aqi = —2 for Mg2+ and +1 for Nb5+; and a\l — l'\ is the interionic separation. For the 
A(5i/3Z?2/3)C>3 composition, this model predicts a 1:2 GS and a 1:2 ^ disordered transition 
at high temperature, consistent with the experimental data for the Ba(Z?i/3Z?2,3)03 systems. 

In figures 1 and 2, the BV (ionic) model values and all the Ba systems, exhibit the same 
hierarchy: AZ^ni],^ < A£[no),.2 < AE[ooi],.2- In the Pb systems, however, this hierarchy 
only occurs in PMN and PZT. Experimentally, the 1:2 structure ([11 l]i;2) is observed as the 
low-temperature (presumably GS) phase for all the Ba systems, and it is the predicted GS of 
the BV model. In the Pb systems, however, the 1:2 structure may not be the GS for any of 
them; in PMN for example, at least one 30-atom superstructure is predicted to have lower 
energy [30]. Energy ranges A£[ooi],.2 - A£[ooi]1:2, for the BV values and the Ba systems, are 
between 40 and 60 kJ mol-1 (one mole is Aß03), but analogous ranges for the Pb systems, 
A£highcst - A/lowest are between 1 and 8 kJ mol"1. In A(Z?i/2#J/2)03 systems (figure 2), A£ 
ranges for the Pb systems are about half of those for the Ba systems, and similar results obtained 
for the A(Mg1/2W 1/2)03 and A(Sc2/3Wi/3)03 systems (figures 3 and 4). A second trend that 
occurs in both figures 1 and 2 is that A£-ranges for A(B, Nb)03 systems are typically a little 
smaller than those for the corresponding A(B, Ta)03 systems; consistent with experimental 
data indicating higher transition temperatures for cation ordering in Ta systems (table 1). 

3. Discussion 

The configurational energy is apparently dominated by two contributions: long-range Coulomb 
interactions which favour configurations that maximize unlike charges on nearest-neighbour B 
sites; and short-range interactions that are primarily associated with the optimization of A-0 
bonds. Long-range electrostatic interactions dominate when the A cation is the larger, more 
regularly coordinated Ba2+, and short-range interactions become competitive when it is the 
smaller, less regularly coordinated Pb2+. 

Concentrations of the underbonded oxygens in B2+-0-B2+ or B3+-0-B3+ environments 
increase monotonically in the sequences of structures [1 ll]i:2, [ 110]i:2 and [001]i:2 (figure 5), 
and [lll]i:i, [H0]i;i and [001]1:] (figure 6); in both cases, the energies for BV (ionic) 
model calculations and Ba systems also increase monotonically. The Pb systems however, 
do not follow this trend and Pb(Z?i/3, Z?2/3)03 systems depart from it more strongly than 
Pb(ßi/2ß;/2)03, Pb(Mg1/2W1/2)03, or Pb(Sc2/3W1/3)03 systems. Substitution of Pb for 
Ba drastically reduces the A£-ranges, which implies that energetically favorable Pb-0 
interactions anticorrelate with electrostatically favourable ß-site configurations. Thus, an 
increase in the concentration of electrostatically destabilizing configurations implies an 
increase in the concentration of stabilizing Pb-O bonds, leading to a reduced change in 
configurational energy for the Pb(ß, B')OT, systems. This trend is much more pronounced 
in the A(B\ß, #2/3)03 systems than in Pb(ß|/2ßJ/2)03 systems for two reasons: (l)oxygens 
in B2+-0-B2+ environments are more severely underbonded than those in 53+-0-Z?3+ 

environments, hence Pb-0 bonds to the former are more stabilizing than those to the latter; and 
(2) the 1:1 stoichiometry of Pb(ßi/2ßj/2)03 favours the ionic (1:1) GS. Point (1) above also 
explains why A£-ranges are smaller in Pb(Z?1/3, ß2/3)03 systems than in Pb(Sc2/3Wi/3)03 

systems. 
The importance of Pb 6s to O 2p hybridization in Pb(ß)03 perovskites is well established 

[31-35]. For example, Cohen [32] and Cohen and Krakauer [33] emphasized its role in the 
ferroelectricity of PbTi03. Bellaiche et al [34] and Wensell and Krakauer [35] compared the 
energetics of structural relaxations of PZN and BZN in the [ 111 ] 1:2 (1:2) and [001 ] 1:2 structures, 
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Figure 7. Three different lead environments in PMN supercells with arrows indicating how Pb 
relaxes towards underbonded oxygens (small grey circles): (a) environment with two-thirds of the 
Pb atoms in the [110]i:2 structure; (b) environment with the remaining one-third of the Pb atoms 
in [110]i:2, and all the Pb atoms in [110]i:i, symmetry prevents these Pb atoms from relaxing 
toward the underbonded oxygens; and (c) environment of two-thirds of the Pb atoms in the [001]i:2 
structure, and all Pb atoms in [001 ] i: i. 

and emphasized the role of short Pb-0 bonds in the [001] 1:2 structure. Short Pb-0 bonds also 
occur in the [110]):2, [110]i:i and [001]1:i structures, but the most important point seems to 
be that the oxygens in these bonds are the otherwise underbonded oxygens in B2+-0-B2+ or 
B3+-0-B3+ triplets. Even if the ordered GS has no underbonded oxygens, as in [11 l]i:2 and 
[lll]i:i, thermal disordering will create them along with overbonded oxygens in B5+-0-B5+ 

or B6+-0-B6+ triplets. In the Ba systems the energetic costs of such configurations are not 
as strongly mitigated by short-range interactions, so ordered phases remain stable to higher 
temperatures and the Ais-hierarchies for Ba systems resemble those for the BV (ionic) model. 
In the Pb systems however, Pb-0 bonds to underbonded oxygens typically contract, and those 
towards overbonded oxygens elongate if the configuration of the surrounding 5-ions permits 
(figure 7). 

In the PMN [110]i:2 supercell two-thirds of the Pb atoms occupy sites with a single Mg2+- 
0-Mg2+ triplet (figure 7(a)). The Pb-0 bond to this oxygen is predicted to be only 2.38 Ä, 
whereas bonds to oxygens in the other triplets are: 2.62 Ä for Mg2+-0-Nb5+, and 2.86, 3.09 
and 3.36 Ä for the Nb5+-0-Nb5+ triplets. The remaining one-third of Pb's in the [110]1:2 

structure have two mirror-plane related Mg2+-0-Mg2+ triplets (figure 1(b)), which frustrate 
the formation of short Pb-0 bonds, and leaves all the Pb-0 distances about the same: 2.83 Ä 
for Mg2+-0-Mg2+; 2.85 Ä for Mg2+-0-Nb5+; 2.79 Ä for Nb5+-0-Nb5+.   In the [110]1:1 
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structure all Pb's occupy sites with two mirror-related Bi+-0-Bu triplets (figure 1(b)), and 
A£[no]N —£[iii],., remains approximately constant when Pb is substituted for Ba(cf figures 1 
and 2). Thus, Pb-0 relaxation/stabilization effects are clearly present in the [001]2:i, [ 110]2:i 
and [001 ] i: i structures, but absent from the [ 110] i: j structure, which has underbonded oxygens, 
for reasons of symmetry. 

Qualitatively, the BV ionic model [29] captures the essence of cation ordering in the 
Ba systems, in which Coulomb interactions dominate, but it fails for the Pb systems because 
it ignores short-range interactions. BV suggested that the covalency of the short Pb-0 
bonds might provide a mechanism for stabilizing 1:1 order in place of 1:2, but no specific 
mechanism was described. Furthermore, they preferred the proposal that Pb4+ on B sites 
might be responsible for 'the weak 1:1 order in PMN and PMT. Octahedral Pb4+ is a possible 
contributing factor in real samples with excess lead, but it fails to explain why (in the absence 
of octahedral Pb4+) the A£-ranges for Pb(ß, B')03 systems are so much smaller than those of 
the corresponding Ba systems. Evidently, Pb(ßi/3ß2/3)03 perovskites are more susceptible 
to ß-site cation disorder than their Ba counterparts because of the near cancellation of long- 
and short-range contributions to the configurational energy. 

4. Conclusions 

Comparing the first-principles calculations for Ba(ß, ß')03 perovskites with those for 
Vb(B, B')OT, perovskites indicates that the long-range Coulomb interactions which drive 
Z?-site cation ordering in the Ba systems do not dominate in the Pb systems. Hybridization 
between the Pb 6s and O 2p states on otherwise underbonded oxygens in B2+-0-B2+ or 
Z?3+-0-Z?3+ environments leads to a near cancellation of long- and short-range contributions 
to the configurational energies in the Pb(ßi/3, ß2/3)03 systems. Similar, but only partial 
cancellations occur in the Pb(Sci/2ß;/2)03, Pb(Mgl/2Wi/2)03, and Pb(Sc2/3W*i/3)03 

systems. Competition between long-range Coulomb interactions and short-range many- 
body interactions explains why Pb(ß, ß')03 perovskites disorder at lower temperatures than 
Ba(5, ß')03 perovskites. 
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Abstract. A method for calculating the solution enthalpy of substitutional impurities in crystals is 
derived. A difficulty that arises in the ab initio calculation of the solution enthalpy is that the long- 
ranged elastic strain contribution cannot be computed within the rather small supercells that are 
computationally feasible. Here, we suggest combining atomistic ab initio methods with continuum 
elasticity theory to treat the problem of the long-ranged elastic strain. Additionally, it is shown that 
the solution enthalpy can be very useful for estimating the enthalpy of mixing. 

1. Introduction 

When an impurity is introduced in an otherwise perfect crystal, the surrounding atoms are 
displaced. Impurity shall refer to atoms of another species as well as the absence of an atom, 
that is, a vacancy. Far from the impurity, the displacement is both small and a smooth function 
of distance, so that the strain tensor is well defined. Therefore, at some distance from the 
impurity a continuum linear elastic description is applicable. In the immediate vicinity of the 
impurity, however, the displacements are not a smooth function of the distance. For example, 
in some cases atoms in the nearest neighbour shell move away from the impurity, while atoms 
in the second nearest neighbour shell move towards the impurity. Thus, near the impurity the 
displacements are irregular and cannot be described with a continuum theory. In an analogy 
with the dislocation theory, the energy of a single impurity can be considered as the sum of a 
linear elastic part applicable beyond some minimal distance from the impurity, and a core part 
that takes account of the irregular displacements as well as the usually short-ranged chemical 
effects. 

The impurity core energy can be computed with local density approximation (LDA) 
electronic structure calculations by computing the total energies of supercells in which a single 
impurity has been, or has not been, introduced. However, such calculations are limited to a 
rather small number of atoms, whereas the elastic strain is not confined to such a small cell. 
Combining an atomic scale LDA electronic structure method with a continuum treatment using 
linear elasticity appears to be ideally suited to compute the energetics of impurities. Thus, the 
infinite crystal around the impurity is divided into two parts: a small cell around the impurity 
in which the relaxations are treated atomistically (atomistic region), and the rest of the crystal 
where the relaxations are treated with continuum elasticity (continuum region). 

Here, we apply the method to the computation of the solution enthalpy of substitutional Mg 
and Sr impurities in Al, and of Al in Mg. The definition of the vacancy formation enthalpy is 
formally identical to that of the solution enthalpy, and the vacancy formation enthalpy in Al has 
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also been computed. Al was selected as the matrix material because of its practical applications 
and the fact that it is rather isotropic, which greatly simplifies the elasticity calculation. The 
case of a Mg impurity was chosen because Mg is one of the main alloying elements in Al. 
Alas, the atomic radius of Mg is only about 10% larger than that of Al, making the strain and 
relaxation effects rather small. Therefore, an element chemically similar to Mg, but with a 
much larger atomic size difference with Al was chosen. Sr has an atomic radius that is about 
50% larger than that of Al, making for very significant relaxation and strain effects. 

Knowledge of the solution enthalpy can be of use for estimating the enthalpy of mixing. 
The difference between the formation enthalpy of some ordered compound and the mixing 
enthalpy gives the ordering enthalpy. As the ordering enthalpy is roughly proportional to 
the order-disorder temperature, it follows that the enthalpy of mixing can be used to get an 
idea about the phase diagram of alloys. Below, the relationship between the various energetic 
properties will be derived. 

2. Theory 

2.1. Definition of solution energy 

The solution energy AEX(A) of a substitutional atom X in a matrix of A atoms is the change 
in the energy produced by replacing a single A atom in an infinite crystal by an X atom and 
relaxing all atoms i to their new equilibrium positions /?? 

AEXiA) = lim [EAnx(Ri = Ä?) - nEA(a = aA) - Ex(a = ax)] 0) 

where a is the lattice parameter. It should be noted that the structure of pure A and pure X 
can differ, which means that a structural energy difference for the X phase may need to be 
considered. As all constituents are at their equilibrium lattice parameters, the pressure (or, more 
precisely the stress tensor) vanishes so that energies and enthalpies take the same numerical 
values. The definition indicates that there are two parts to AEX{A), namely a chemical part 
A£^(T)' caused bythe change of the type of interatomic bonds, and a relaxation part AEX\A), 
due to the repositioning of all atoms around the dissolved atom. 

AZs^'j can be computed by subtracting the energies E of the pure elements A and X at 
their respective equilibrium lattice parameters from the energy of a large cell with A atoms 
and a single X atom where all atoms have positions corresponding to the pure A species: 

AEf™ = lim [EA,iX(a = aA, /?,- = R?) - nEA(a = aA) - Ex(a = ax)] (2) 

where Rf indicates the equilibrium positions in the pure A crystal, prior to the introduction of 
the impurity X. Chemical interactions in solids, especially in metals where strong electronic 
screening effects occur, have been shown to be relatively short-ranged. Typically, only the first 
few neighbour shells contribute to the chemical energy [1]. The relaxation part of the solution 
energy, given by 

AEX
X
(A) = lim EA„x(a = aA, /?, = R?) - EAi<x(a = aA, R, = R?) (3) 

is generally harder to compute because relaxations of atomic positions decay slowly with 
distance. In the first few neighbour shells around the defect the relaxation is irregular, but 
at greater distances the magnitudes of the relaxations become very regular and decay as the 
reciprocal of the distance squared [2]. Therefore, it is intuitive to divide AEX*A) into a part that 

is due to the irregular relaxation in the immediate vicinity of the defect, the 'core', AE'/^0'0 
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and a part that is due to the long-ranged but regularly decaying relaxation elsewhere in the 
\—ta" 

(A) crystal AE^"tail 

AEf{A) = AEf-^ + AEf(^. (4) 

For the purpose of practical calculations, it is convenient to compute AEC
X^ and A£^)

core 

together within some atomistic calculation, and to calculate AEr
X(A^'1 by means of linear 

elasticity in a continuum approximation, 

AEx{A) = AE^A) + AEf-^ (5) 

where AE™^ = AE$™ + A£'£x
(~

core. The solution enthalpy AHX{A) at zero pressure is 
obtained by minimizing AEX(A) with respect to volume or lattice parameter. It should be noted 
that the energies in an atomistic calculation have certain systematic and non-systematic errors. 
The accuracy of energy differences, such as the solution energy, is greatest when systematic 
errors are made to cancel, which is best achieved by computing all of the energies in the 
same cell, with the same Brillouin zone and the same fc-points. The non-systematic (random) 
errors make that the 'core', or alternately n, should not be selected too large. Therefore, it is 
understood that in actual atomic calculations the limit over n in equations (1) and (2) should 
not be taken too literally. 

The solution enthalpy can also be extracted from the enthalpy of mixing for solid 
solutions. In phase diagram assessments the enthalpy of mixing A#mix is fitted to a polynomial 
(Redlich-Kister formula) in the composition [3] 

Atfmix(x) = x{\ - x)[Lfx + L%(1 - 2x) + Lfx(l - 2x)2] (6) 

where LAX (n = 0, 1, 2) are fitting parameters and x is the concentration of the solute X. The 
solution enthalpy is easily obtained from the mixing enthalpy 

AHxw=Hr-L (7) 

which gives 

AW T (°)  _L. I W  A- T <2) AH - J (0) T (1) I (2) <K\ AHx(A) = E,Y + LAY + LAY AMMX) — LAY - LAY - LAX. tö] iX(A) = L'AX + LAX + ^AX anA(X) — ^AX ~ ^AX ~ ^AX' 

Conversely, the enthalpy of mixing can be estimated from the solution enthalpies with cubic 
splines, 

AHmix(x) « AHx(A)x{\ - xf + AHA(X)x
2(\ - x). (9) 

Such an estimate is analogous to a derivation for the packing density of hard sphere mixtures 
[4]. 

2.2. Atomistic and continuum regions 

The infinite crystal is divided into a spherical region around the impurity, the atomistic region, 
and the remainder of the crystal, the continuum region. The continuum region is characterized 
by a spherical cavity. The inclusion of a substitutional impurity in the atomistic region causes 
this spherical region to change volume. When the material is isotropic, as we shall assume 
here, the atomistic region will retain a spherical shape. The volume change of the atomistic 
region causes the cavity in the continuum region to change volume. Therefore, the volume 
change of the atomistic region is resisted by the continuum region. The equilibrium radius of 
the atomistic region after the impurity has been introduced can be computed by minimizing 
the sum of the energies of the atomistic region and the continuum region. 
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The energy associated with the volume change of the cavity in the continuum region can 
be computed analytically [2]. The elastic energy stored in the continuum region is a function of 
the elastic tensor, the strain at the 'cavity wall' S and the size and shape of the 'cavity'. There is 
spherical symmetry around the centre of the cavity, so that the usual spherical coordinates r, (j> 
and 6 are selected. The displacement vector u is radial, and a function of the radial coordinate 
r only, and following Landau and Lifshitz [5] its norm takes the form 

u(r) = ar + ßr~2 (10) 

where a and ß are constants that are determined by boundary conditions. At an infinite distance 
from the impurity the displacement should vanish so that a = 0. The constant ß has a simple 
physical interpretation [2]: it is proportional to the volume change that the defect induces in 
the infinite matrix, A V = 4nß. ß is determined by the displacement at the cavity wall: 

u(R)=ßR~2 (11) 

where R is the radius of the cavity. The difference between the original (equilibrium) cavity 
radius R0 and the actual radius R gives the displacement at the cavity surface u(R) = R - R0, 
so that ß = R2(R - R0). As the off-diagonal stress a and strain e vanish, the elastic energy 
density is given by 

e(r) = arr€rr + aU€^ + age^ee (12) 

with 
du u u du 

err = — £<p<p = eve = - arr = 2k- + (A + 2/i) — 
or r r or 

a<ll(j> = ae0=2{k + ii)-+X— (13) 
r        or 

where X and ß are the usual Lame coefficients. The elastic energy of the continuum A£^^ail 

is obtained by integration of 
/•OO 

AEf-f= dr4jrr2e(r) (14) 
JR 

which gives 

A£^-;ail = l67TßR(R - R0)
2. (15) 

Computing the energy of the spherical atomistic region requires some approximations. 
Embedding is required to avoid surface effects. The simplest embedding is to embed the 
region with itself, that is, to make a periodic arrangement of atomistic regions. Alas, spheres 
do not 'tile' three-dimensional space. However, certain approximately spherical polyhedrons, 
such as dodecahedrons, do tesselate in three-dimensional space. Thus, by selecting, say, a 
face centered cubic (fee) arrangement of impurity atoms within the matrix (see figure 1), one 
obtains dodecahedral Wigner-Seitz cells that are close to a spherical shape. Moreover, the 
energy of such dodecahedral cells is easily computed as a function of their volume. In the 
terminology of Eshelby [2], we can note that impurities exert image forces on each other. 
However, the image forces can change the volume only to a limited extent because the matrix 
resists. 

Using standard electronic structure methods, the total energy of such spheroid cells is 
computed as a function of the average lattice parameter of the underlying lattice. In other 
words for a cell with a fixed number of atoms, the total energy is computed as a function of 
the radius of the cell. The radius of the cell is defined by matching the cell volume Q with a 
corresponding sphere volume: 

* = Ur) • (16) 
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Figure 1. The fee arrangement of impurity atoms (light) in an Al matrix (dark). 

R and the average fee lattice constant a in the core region are related through Q = (n/4)ä3, 
where n is the number of atoms in the core region. Typically, A £^} (R) resembles a parabola 
centred around the relaxed equilibrium radius Rx, 

AEc°leA)(R) « AEc
x°leA)(Rx) + \BRX(R ~ R,f (17) 

where B is the bulk modulus of the material in the core region. As mentioned above, generally, 
Rx will differ from the equilibrium radius of a cell without an impurity R0. 

The solution energy AEX(A) is found by inserting equation (15) into equation (5), and 
minimizing with respect to R, 

(18) AEx(A) = min[A££•(%(/?) + 16KIXR(R - R0)
2] 

R 

The solution enthalpy AHX(A) at zero hydrostatic pressure is obtained by minimizing AEX(A) 
with respect to the lattice parameter. 

2.3. Details of the methodology 

The atomistic calculations for AZs^d) were performed with an ab initio electronic total energy 
method based on density functional theory in the LDA using ultra-soft pseudo potentials as 
implemented in the VASP software [6]. The cut-off energies for the pseudo potentials of Al, 
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Mg and Sr were 129, 106 and 86 eV. The Ceperly-Alder exchange-correlation function, as 
parameterized by Perdew and Zunger [7], was used. To achieve a nearly spherical region 
around each impurity, the impurities were arranged according to an fee structure with [2 2 0] 
translation vectors, where [\ | 0] are the translation vectors of the underlying fee Al matrix. 
This geometry made for an atomistic region of 64 atoms, including the first to sixth and eighth 
neighbour shells around the central site. However, shells that lie on the cell boundary have 
displacement vectors that are restricted by symmetry considerations. The fourth to sixth and 
eighth neighbour shells are located at the cell boundary and therefore cannot relax away from 
fee lattice positions. These shells can have non-zero displacements only as a result of changes 
of the average lattice parameter. The seventh neighbour does not occur in the 64 atom cell. 
The total energies of the pure elements, and for the Al^Mg and AlwSr structures, with and 
without relaxations, were computed using this geometry. Reciprocal space integrations were 
carried out with 28 Monkhorst-Pack [8] special k-points in the irreducible wedge. Forces 
for relaxing the atomic positions were calculated using the Methfessel-Paxton method [9] for 
accounting for partial occupancies of electronic states. 

In order to compute AZT^j3'1, the Lame elastic constant fi for the Al matrix is needed. 
It was extracted from the theoretical elastic constants [10] at an fee Al lattice parameter 
ao = 0.399 nm: Cn = 121 GPa, Cn = 63 GPa, C44 = 33 GPa. As the anisotropy ratio 
A = 2CAA/(C\ i - C\2) for Al is not precisely equal to unity, an average value of \x has been 
defined as follows: 

li = \{ii\ +/x2) Mi=C44 M2 = \{C\\ -Cn)- (19) 

The numerical values for ß\ and ß2 are close (33 and 29 GPa, respectively). In the continuum 
calculations ii = 31 GPa has been used. 

3. Results and discussion 

The properties computed for the pure elements (see table 1) are in good agreement with those 
reported in the literature and those obtained with all-electron methods. The lattice parameter 
and bulk modulus of Al agree completely with those obtained by FLAPW calculations [10]. 
For fee Mg (Sr) good agreement is found with LMTO-ASAf calculations. This indicates that 
the 'pseudization' of the potential does not give significant errors other than those introduced 
by the LDA itself. A comparison of the fee lattice parameters shows that Mg (Sr) is about 11 % 
(46%) larger than the Al matrix. Both Mg and Sr are considerably 'softer' than Al. As was 
observed already by Hume Rothery and Raynor [11], one should not expect elements with a 
lattice mismatch beyond 15% to be very soluble. Therefore, these calculations suggest that Sr 
cannot dissolve in Al in appreciable amounts, which is borne out by the actual phase diagram 
[12]. 

Next, properties of the core-regions were computed, and some salient results are listed 
in table 2. The geometry of the 64 atom core region has been described above. For the 
accurate determination of the core contribution to the solution energy the pure elements were 
also computed in a 64 atom cell, and identical £-point grids were used. When all atoms are 
kept at the original fee lattice positions (no relaxation) and when the original pure Al lattice 
parameter is maintained after introducing the impurity atom, naturally the energy cost is very 
high, as the high value of the core chemical solution energy indicates. Of course, Sr being still 

f For the LMTO-ASA calculations spdf-Iikc orbitals were included. 145 A-points in the irreducible Brillouin zone 
were used for the tetrahedron-method reciprocal space integrations, and the so-called combined corrections were 
included. 
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Table 1. The computed equilibrium lattice parameter a and bulk modulus B of the pure elements 
as computed with VASP and all-electron methods. 

a B 
Element Method (nm) (GPa) Reference 

Al VASP 0.39811 82 This work 
LMTO-ASA 0.3979 86 This work 
FLAPW 0.399 82 [10] 

Mg VASP 0.443 32 42 This work 
LMTO-ASA 0.4420 41 This work 

Sr VASP 0.57971 16 This work 
LMTO-ASA 0.5755 15 This work 

Table 2. The results of the atomistic calculation of the 64 atom core region. 'Vac' refers to a 
vacancy, a is the averaged fee lattice parameter in the core region, B is the bulk modulus, £tot is 
the total energy, AE is the chemical or core solution energy with reference to fee pure elements, 
without considering the effect of the tail relaxation energy AE'X

X^ . 

a B £tot AE 

Composition Relaxed (nm) (GPa) (eV) (meV) 

Al64 — 0.39811 82 -267.14909 — 
Mg64 — 0.443 32 42 -112.615 80 — 
Sr64 — 0.57971 16 -122.15252 — 
Al63Mg No 0.39811 — -264.659 80 A t-chem     _ 74 7 ACMg(Al) - /4-' 

Al63Mg No 0.398 65 79 -264.66491 A£Mg(AI)(Ämin)=69.6 

Al63Mg Yes 0.398 68 80 -264.69220 A£^AI)(^) = 
42

-
3 

Al63Sr No 0.39811 — -263.10098 A^Al) = i782-5 

Al63Sr No 0.401 20 70 -263.237 31 A£SKAl)(Rmin) = 1646-2 

Al63Sr Yes 0.401 38 76 -263.90196 A£^1)(i?,) = 981.6 
Al63Vac No 0.398 11 — -262.254 33 **&) = 720.6 
Al63Vac No 0.397 64 85 -262.257 86 A^c(AI)Äin)= 717.0 

Al63Vac Yes 0.397 52 86 -262.33155 A^(A»(«*)= 643.3 

considerably larger than Mg, the Sr core chemical solution energy is much larger than that of 
Mg. 

Next, when the atoms are kept at fee lattice positions but the whole core region is allowed 
to expand from a radius R0 to a radius 7?min so as to accommodate the large impurity atom, 
the core solution energy drops a little. Percentage wise, the decrease is the same for Mg and 
Sr, about 7%. If one were to approximate the volume of the 64 atom core region by adding 
the atomic volumes of the pure elements, one would over-estimate the actual expansion by 
as much as 50%. The expansion is only about two-thirds of that expected on the basis of the 
pure element atomic volumes. Clearly, the rather 'soft' Mg and Sr atoms are getting squeezed 
in the Al matrix. In the case of a vacancy, only a slight contraction of the lattice results, in 
agreement with previous calculations [13]. This is due to the fact that the nearest neighbours 
surrounding the vacancy can move inward only a little before their mutual repulsion becomes 
too large. However, the small reduction in the lattice parameter causes an appreciable increase 
in the bulk modulus. 

When the lattice parameter and atomic positions are fully relaxed, the core solution energy 
is considerably reduced, to about 55% of A£*(

e^. However, as the core radii Rmin and Rx are 
very close, the complete relaxation of the atomic positions changes the average lattice constant 
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Table 3. Displacement vector fi in the 64 atom cell surrounding an impurity at the origin in terms 
of the average fee lattice parameter. The average fee lattice parameter is 0.4 nm. A displacement 
vector of (000) means that a site moves in a homogeneous fashion as a function of the average 
lattice constant (or R) only. 

Shell (hkl) i?Mg x 105 »Sr x 105 
«Vac x 10s 

1 <H0> (478 4780) (235123510) (-826 -8260) 
2 (100) (4500) (-342 00) (-10800) 
3 dn) (73 2020) (616 228 228) (-35 - 32 - 32) 
4 (110) (000) (0 0 0) (00 0) 
5 <§Jo> (42 -42 0) (188 - 1880) (-10 100) 
6 

7 
8 

(in) 
/3 i M 

(000) (000) (000) 

\2 '  2' 
(200) (000) (0 00) (00 0) 

very little. Hence, the minimization with respect to the lattice parameter only, but with fixed 
fee atomic positions, gives almost the correct lattice parameter, but misses a large part of the 
reduction of the solution energy, while the relaxation of the individual atoms does not change 
the average lattice parameter very much, but drastically reduces the solution energy. Clearly, 
individual atomic relaxations around an impurity are very important for computing solution 
energies. It is somewhat surprising that the relative change of the solution energy and of the 
average lattice parameter should be the same for Mg and Sr, especially considering that their 
bulk moduli differ considerably. For the vacancy, the effect of full relaxation is relatively 
minor. This is caused by the afore-mentioned limitation for inward movement of atoms in the 
nearest neighbour shell. The relaxation of the first and more distant neighbours is very small, 
as is also evident from table 3. 

Table 3 shows the computed relaxations of Al atoms around a Mg and a Sr impurity and 
around a vacancy. The fourth to sixth and eighth neighbours can have non-zero displacements 
only as a result of changes of the average lattice parameter. As expected from the large size of 
the Sr atom, the relaxations around a Sr atom are much larger than those around a Mg atom. 
The relaxations around a Sr atom are not completely similar to that around a Mg atom. For 
example, in the second neighbour shell the relaxations have opposing signs. This is due to 
the fact that Sr is so large that the Al atoms in its nearest neighbour shell are widely separated 
from each other. This leaves gaps towards which the second neighbour Al atoms are drawn. 

The Al atoms rather quickly approach the fee lattice positions both around Mg and Sr. In 
the fifth shell, the largest distance that can freely relax in the 64 atom core region, the relaxation 
is one order of magnitude smaller than in the nearest neighbour shell for Mg and Sr, and is 
two orders of magnitude smaller for the vacancy. In figure 2 the relaxations as computed in 
the core region, and as given by the continuum approximation (equation (10)) are shown. The 
seven neighbour shells that are present in the 64 atom core region have been marked with plus 
signs. The relaxations in the core region at greater distances, in particular for the sixth and 
eighth nearest neighbour shells, show an upward trend, contrary to what would be expected 
from equation (10). The explanation for this is that those outer shells do not relax away from 
fee lattice positions (see table 3). Thus, these shells move purely because the average lattice 
constant in the core region has been expanded by the impurity. Therefore, the more distant 
shells move strictly proportional to the expansion of the lattice, so that the eighth shell is found 
to move more than the sixth shell. This is an artefact of the geometrical constraints. However, 
the relaxation at as close a distance as the nearest neighbour shell is surprisingly well described 
by the continuum approximation. 
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0.002 

U (rail) 

Figure 2. Displacement u as a function of the distance to a Mg impurity r. The plus signs indicate 
the displacements as computed in the core region for the first to sixth and eighth neighbour shells, 
and the full curve is the relaxation according to equation (11). The radius of the core region R is 
0.6228 nm. 

0.6225 0.623 

R (nm) 

AE (meV) 

R (nm) 

Figure 3. Contributions to the solution energy of a single isolated substitutional impurity atom in 
an fee Al matrix, (a) a Mg impurity and (b) a Sr impurity. The curve labelled 'tail' corresponds to 

r-rlx—tail 
'X(A) 

of the 'tail' and 'core 
AßwTf", the curve labelled 'core' represents AEf^}(R) ■ AE'g{%)(R.x), and 'sum' is the sum 

at« : 
R is the radius of the core region. Note, that the minimum of 'tail' occurs 

i?o and the minimum of 'core' occurs at R = Rx. 

The solution enthalpy has been determined with equation (18). The contributions of the 
core region and of the rest of the crystal are visualized in figure 3. The figure illustrates the 
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Figure 4. The enthalpy of mixing in fee Al-Mg: as determined from phase diagram assessments 
(a) [16], (b) [15] and (c) [3]; (d) as estimated with equation (9) from computed solution enthalpies; 
and (e) as obtained from a cluster expansion using tetrahedron-octahedron clusters [18]. 

effect of the elastic tail. For the Mg and Sr impurities, the core region has its lowest energy 
(A£™(r,4)(^)) at a core radius Rx that is larger than a pure Al core region would have (/?0), so 
that the region outside the core is compressed, causing a high elastic tail energy. By slightly 
compressing the core region and diminishing the compression of the region outside the core 
the sum of the core and tail contributions can be minimized. For Mg (Sr) this occurs at a core 
radius of 0.6228 nm (0.6247 nm). This means that the atomic volume of a Mg (Sr) impurity 
in Al is just 15% (73%) larger than that of Al. This is to be compared with the atomic volume 
of pure fee Mg (Sr) which is 38% (209%) larger. In the case of the vacancy, the contraction 
of the core is similarly diminished by the effect of the elastic tail. The vacancy reduces the 
volume by 0.0023 nm3, about 15% of the Al atomic volume, which is between the two existing 
experimental measurements of -5% and -38% [14]. 

The minimum of the curve labelled 'sum' indicates how much the solution energy is 
increased over the value of AEC™C

A)(RX) by the effect of the elastic tail. As is to be expected 
on the basis of the atomic sizes, the elastic tail increases the solution energy of Sr more than 
that of Mg (72.4 meV versus 2.8 meV). These increases of the solution energy are both about 
4% of the chemical solution energy (AE^™). Finally, the solution enthalpies for Mg and Sr 
are obtained by adding AEc^l}(Rx) to the minimum of the curve labelled 'sum' in figure 3. 
Thus, solution enthalpies of 45.1 meV (1054 meV) are calculated for Mg (Sr). The vacancy 
formation enthalpy is increased 2.7 meV by the elastic tail, giving a value of 646 meV. 

Figure 3 also illustrates that the lower and upper bounds for the solution enthalpy can easily 
be obtained from a core-region atomistic calculation. The core solution energy computed in 
a relaxed cell at radius Rx clearly always provides a lower bound, whereas the core solution 
energy computed in a relaxed cell at radius R0 (corresponding to an average lattice parameter 
equal to that of the host material) provides an upper bound for AHX(A)- 

The solution enthalpy AHX{A) as computed by equation (18) is about 60% of the solution 
energy A££h(T)>wnere all atoms are kept at their original positions (no relaxations of any kind). 
As this ratio is the same for two impurities with very different atomic sizes and quite different 
elastic constants, it would be of some interest to see if a similar ratio exists for other impurities 
because AEC^A) is much easier to compute than AHX{A)- 

In the case of Mg it is possible to compare the computed solution enthalpy values based on 
experimental data. Phase diagrams assessments for the Al-Mg system [3,15,16] have given 
various values for the coefficients LAX of equation (6) from which the solution enthalpies can 
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Table 4. Redlich-Kister coefficients for fee Al-Mg alloys from various phase diagram assessments, 
and the solution enthalpies extracted from these coefficients according to equation (8), compared 
with ab initio solution enthalpies (the units are meV). 

,(0) 
UAX ^AX 

,(2) 
^AX A//AI(Mg) A#Mg (Al) Reference 

13.0 0 0 13.0 13.0 [15] 
-12.75 -1.86 0 -14.61 -10.89 [16] 

51.5 9.3 9.8 70.6 32.4 [3] 
— — — 45.1 40.8 This work 

be computed with equation (8), see table 4. For completeness, we also computed the solution 
enthalpy of Al in fee Mg. Clearly, the phase diagram assessments give contradictory results 
which do not compare well with each other. This indicates that the phase diagram assessment 
is a rather unreliable method to extract solution enthalpies. Nevertheless, our calculations 
suggest that the positive sign of LAX found in [3,15] is more reasonable than the negative 
signs of LAX and LAX found in [16]. Enthalpies of mixing can be estimated from the solution 
enthalpies with equation (9). Such an estimate compares rather well with that computed from 
a cluster expansion approach [17,18] as is shown in figure 4. 

The vacancy formation enthalpy in Al has been measured extensively with values ranging 
from 600 to 770 meV [14]. The most accurate experimental value is believed to be 
about 670 meV. A previous calculation [13] in which the elastic tail was ignored (which 
is insignificant) gave 660 meV. These values are in excellent agreement with the present result 
of 646 meV. 

4. Conclusion 

A hybrid atomistic-continuum method has been presented to treat the elastic relaxation 
associated with impurities. It is shown that the long-ranged elastic tail associated with an 
impurity contributes to the solution enthalpy. In the particular case of an isolated substitutional 
Mg (Sr) impurity in an Al matrix, accounting for the long-ranged elastic tail changed the 
solution enthalpy by 2.8 meV (72.4 meV). The solution enthalpy of Mg (Sr) in fee Al was 
found to be 45.1 meV (1054 meV). The solution enthalpy of Sr is so large that no significant 
solubility in Al can be expected, as is readily apparent from the phase diagram [12]. Only in the 
case of Mg was a comparison of the solution enthalpy with data from phase diagram assessments 
possible. Three such assessments existed, which contradicted each other on the sign of the 
mixing enthalpy and solution enthalpy. The present theoretical calculations of the solution 
enthalpy suggested that the assessments of [3,15] appear more reasonable than that of [16]. 

In the case of a vacancy in Al, the effect of the elastic tail was found to be negligible, 
which could be explained on the basis of the very limited ability of the nearest neighbour 
atoms around a vacancy to relax inward. The vacancy formation enthalpy of 646 meV was 
in good agreement with other calculations and measurements. The volume change associated 
with vacancies was computed and was in the range of the experimental measurements. Our 
zero-temperature calculations show that vacancies slightly increase the bulk modulus. This 
surprising effect, which has a very limited extent due to the typically low concentration of 
vacancies, is associated with the decrease of the lattice parameter. 

Solution enthalpies were shown to give a reasonable approximation to the mixing enthalpy. 
Additionally, it was shown that calculations for a relaxed core region can provide upper and 
lower bounds for the solution enthalpy. 
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Abstract. The solidification path of highly undercooled refractory metals and their alloys in 
an ultrahigh vacuum drop tube is shown to involve transitory metastable phases. First-principles 
calculations of the structural stability in these systems are developed to determine the possibility 
of obtaining metastable phases. We show that tetrahedrally close-packed (top) structures are good 
candidates to understand the origin of such metastable phases. 

1. Introduction 

Under conditions of non-equilibrium thermodynamics, the solidification of metallic melts 
may lead to the formation of metastable crystal structures. The use of melt undercooling 
methods at moderate cooling rates is one experimental way of realizing a non-equilibrium 
solidification process. In particular, undercooling experiments on refractory metals and alloys 
can be performed by using the Grenoble drop-tube facility [1]. Unfortunately, the metastable 
phases recorded in these experimental studies are so ephemeral that they can hardly be frozen 
and subsequently analysed. Therefore, first-principles based total-energy calculations appear 
to be essential to evaluate the possibility of obtaining metastable phases and to get some insight 
into the physics of the nucleation path. 

2. First-principles based calculations 

First-principles or ab initio methods allow total energy calculations without parameter fitting. 
The most widely used class of methods is based on the density functional theory (DFT) of 
Hohenberg and Kohn, in the formulation of Kohn and Sham [2], which reduces to the self- 
consistent solution of a single-particle Schrödinger equation. Two implementations of the 
DFT are classically used for studying the structural stability of elemental metals or alloys. 
First the FPLMTO [2] (full potential linearized muffin tin orbitals) and FLAPW (full potential 
linearized augmented plane wave) approaches display the advantage of being unified methods 
in that they can easily treat not only simple metals but also transition metals. Second, in the 
pseudopotential methods, the norm-conserving concept has played a central role in constructing 
modern pseudopotentials. The so-called ultra-soft new generation of pseudopotentials [3] 
allows the treatment of the transition metals by avoiding the expansion of the wavefunctions 
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in a huge set of plane waves. We have applied both FPLMTO and pseudopotential techniques 
when discussing the metastability of the transitory phases in pure refractory metals and in the 
Re-W and Re-Ta systems. 

3. Pure refractory metals 

As a first example, we discuss the transitory phases observed in Re and Ta droplets [2]. 
Temperature measurements of the solidification of highly undercooled Re and Ta droplets give 
evidence of two successive phase transformations with a transitory metastable equilibrium. 
Indeed the reproducibility of the temperature associated with the first recalescence peak is 
consistent with the melting temperature of a metastable phase. This quantity is the key point 
of our study because it is the only property that can be either experimentally determined 
or calculated. Thus, the theoretical strategy is as follows: (a) in the first step, for each 
metal, we calculate the cohesive properties for a set of candidate structures; (b) then the 
melting temperatures of these structures are calculated using a straightforward thermodynamic 
calculation which assumes that the entropy of melting of the metastable (MS) and stable (S) 
phases are similar: 

rMS ~  A£MS-S + A//S_iiq(7^) 

ASs-,iq(rS) 

where the difference in structural energies A£Ms-s is derived from ab initio calculations; 
(c) finally, a comparison between measured and calculated melting temperatures allows us to 
identify the intervening metastable structure among the candidates. To choose the candidate 
structures, we assumed that the mechanism which favours undercooling-induced metastable 
phases is based on the idea of a polytetrahedral short-range order in the undercooled melt 
[4]. Our intuition is that both the undercooling-induced metastable phase and the undercooled 
melt present a similar short-range order. Since the tetrahedrally close-packed (tcp) structures 
are those which are built entirely out of tetrahedral packing units, they can be considered 
as the best candidates for the metastable phases. In contrast, the fee structure consists of 
both tetrahedral and octahedral units, while the bec structure is an intermediate case with the 
octahedra containing second-neighbour bonds. The tetrahedral packing in tcp phases leads to 
characteristic polyhedra which are labelled Z12, Z14, Z15 and Z16, where the numbers refer 
to the coordination number of the atom at the centre of the polyhedron. The simplest example 
of a tcp structure is the Al5 structure, which has eight atoms per unit cell. Two of these are 
surrounded by Z12 polyhedra, which are icosahedra, and the remaining six by Z14 polyhedra. 
The three A15, sigma and chi tcp structures all together contain all the characteristic polyhedra 
of the tetrahedral packing, with percentages of icosahedral sites of 25%, 33% and 41% for 
A15, sigma and chi, respectively. Specifically, zero-temperature total energies E0(V) were 
calculated for bec, fee, hep, A15, sigma and chi structures and for Ta, W, Re and Os metals. 
The results are illustrated in figure 1 for both FPLMTO and pseudopotential techniques. The 
first spectacular result is the relative stability of the tcp phases for a range of electrons from 4.5 
to 6.5. More particularly, the Al5 structure is found to strongly compete with the bec structure 
for Ta and W metals. Using the value of the lattice stability of Ta in the A15 structure, 
AE = 2.8 mRyd atom"', equation (1) gives a melting temperature of 2900 K (the enthalpy 
of melting of the bec (Ta), AHs^nq(T^), being taken as 32 kJ mol-1 and 7^ = 3275 K [2]), 
in unexpected good agreement with the measured temperature of 2930 ± 10 K. The second 
important result of the present calculations is that all the lines in figure 1 intersect at one 
particular band filling, namely an electron-to-atom ratio of e/a = 6.7. As a consequence, the 
sequence A15-sigma-chi also depends on the band filling. As these three tcp phases display 
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Figure 1. Structural energy differences for Ta, W, Re and Os. (a) FPLMTO; (b) pseudopotentials. 

a different percentage of icosahedral sites, i.e. Z12 site, it is tempting to relate their relative 
structural stability with this percentage. Indeed we think that it is connected with the fact that 
perturbations conforming to the point group of the icosahedron do not affect the degeneracy 
of the d levels, but for all the other coordination symmetries the d-level degeneracy is partly 
broken. Thus, it appears that the icosahedral sites show a predominance for atoms with filled 
or nearly filled, or else empty d shells. Atoms with d shells close to half filled are mostly 
found in coordinations of lower symmetry, where the d orbitals may hybridize to form directed 
bonds. 

4. Re-W and Re-Ta systems 

The experimental phase diagrams of binary systems based on refractory metals show that 
associating a hep metal such as Re with a bcc metal such as W, Mo, Ta or Nb leads to complex 
phases. All these phases are tcp structures and, among them, the most frequent are the sigma, 
chi and A15 phases. The results of figure 1 can also be used to understand the sequence of 
tcp phases in these binary systems. For instance, if a chi phase exists at a given composition, 
by changing the composition which leads to a decrease in the e/a ratio, then it is possible 
to get a new phase which might be a sigma phase, a Al5 phase, or a bcc solid solution, but 
not a hep phase. Reciprocally, if the e/a ratio increases, then an hep phase may occur. The 
sequence bcc-sigma-chi-hcp can be found in both Re-Ta and Re-W systems. In the Re-W 
system, the drop-tube experiments performed for different alloy compositions show that the 
double recalescence phenomenon occurs when undercooling the alloys between 18 and 35 at% 
Re: this reveals the existence of a metastable phase at high temperatures in a large domain of 
composition. In the Re-Ta system, double recalescence phenomena are observed in a narrow 
composition range between 14 and 17 at% Re and the corresponding droplets exhibit two kinds 
of morphologies: this may be consistent with two different nucleation paths with two different 
types of transitory phases. In order to understand the origin of these different metastabilities, 
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Figure 2. Calculated structural energies of sigma, chi, A15 and solid bcc solution in: (a) Re-W 
system; (b) Re-Ta system. 

we have performed a theoretical analysis of the interatomic interactions in the Re-W and Re- 
Ta systems. In the first step, the energies of the ground state structures are calculated, as well 
as the formation energies of some metastable phases (see figure 2). The first observation is 
that the formation energies are markedly more negative in Re-Ta than in Re-W. The second 
result is that the A15 structure displays a metastable character at 25 at% Re for both systems. 
Therefore, in the Re-W system, the experimentally observed metastable phase is identified as 
the A15 phase. Moreover, Re-W develops weak heteroatomic interactions, so that entropic 
effects may become predominant at high temperatures. Such effects have been used to interpret 
the wide range of metastability of this A15 phase [5]. For the Re-Ta system, first-principles 
calculations show that the sigma phase competes with the A15 phase in the Ta-rich side. The 
metastable character of the sigma phase in this composition range can be related to the site 
occupation. Therefore, the second part of our study deals with the atom distribution in the 
sigma phase. The sigma phase displays five different sites, namely (a), (b), (c), (d) and (e). 
The (a) and (d) sites are 12-fold coordinated, the (c) and (e) sites are 14-fold coordinated, and 
the (b) sites have the largest coordination number, i.e. 15. CVM (cluster variation method) 
calculations using effective pair interactions extracted from first-principles calculations have 
been performed to study this site occupation [6]. Initial results shows that for both systems, 
the (b) site has the strongest attraction to the Ta/W atoms, followed by the (c) and (e) sites. Let 
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us mention that in Re-Ta, this site preference is more pronounced than in the Re-W system. 
At 33 at% Re, when all (b), (c) and (e) sites are filled and when the Z12 sites become filled, 
Re-Ta and Re-W display a different behaviour. In the W-based system, the (a) and (d) sites are 
about equally attractive to the W atoms, while in the Ta-based system, the (a) sites are strongly 
attractive to Ta. This leads to a configuration which is as stable as the configuration at 60 at% 
Re, which is observed in the phase diagram and which is also as stable as the A15 phase. This 
peculiar configuration may explain the occurrence of the sigma phase as a metastable phase 
far from its well-known composition range. 

5. Conclusion 

High undercooling of refractory metal-based systems appears to be an exciting way to get 
metastable phases and to discuss competitive phase selection phenomena. First-principles 
calculations can be used as a guide to understand the origin of such metastability. Preliminary 
results suggest that the mechanism which stabilizes the metastable phases is related to the 
complex structure of the highly undercooled liquid. Ab initio molecular dynamics would be 
essential to analyse the structures of these undercooled liquids. Such work is in progress. 
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Abstract. The pseudo critical slowing down phenomenon reported for an order-disorder transition 
of the first order is reproduced by the path probability method calculations on a L lo ordered phase. 
The slowing down takes place towards the instability temperature of the metastable ordered phase 
rather than the transition temperature. In order to clarify the thermodynamic origin of the pseudo 
critical slowing down, the temperature dependency of generalized susceptibilities are calculated 
for the Llo ordered phase as a function of 1)2,2/1*2,1, where vi,n is the nth nearest neighbour 
effective pair interaction energy. The diverging behaviour is observed towards the instability 
temperature through the transition temperature. This is pronounced, as the second-order character 
is emphasized. It is confirmed that the pseudo-critical slowing down phenomenon is caused by the 
flattening of the free energy surface, leading to the loss of the thermodynamic driving force for 
relaxation. The first-principles calculation of the susceptibility is attempted for Cu-Au system at 
a 1:1 stoichiometric composition. A sharp rise is confirmed near the transition temperature. 

1. Introduction 

Phase stability is a 'static' property of a given phase while phase transition involves more 
'dynamic' phenomena originating from atomic diffusion and lattice dynamics. Although 
the first-principles studies have been put forward for various physical and thermodynamic 
properties of an alloy system, many of them have been centred around phase stability 
calculations. 

The dynamic aspects associated with phase transition is manifested as approaching the 
transition temperature. These are mainly caused by fluctuations of concentration, degree of 
order, stiffness of a lattice etc and are termed pre-transition phenomena. Experimentally, 
one of the conventional ways of detecting pre-transition phenomena is the electric resistivity 
measurement at an isothermal ageing process following an up(down)-quenching operation. 
With increase (decrease) of the temperature, the relaxation time generally decreases (increases) 
due to the enhancement (suppression) of thermally-activated atomic diffusion. The temperature 
dependency, however, is not monotonic and it has been quite often observed that the relaxation 
time increases again near the transition temperature. For the second-order transition, this is a 
well known critical slowing down phenomenon, but even for the first-order transition, a similar 
phenomenon has been reported [ 1 ] for NisPt ordered phase and has been termed pseudo-critical 
slowing down. 

Theoretically, a key quantity to analyse the pre-transition phenomenon is the generalized 
susceptibility, which is expressed as the second-order derivative of the free energy functional 
with respect to fluctuating variables. The second-order derivative provides the curvature of 
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the free energy surface, which is a driving force of the transition. Furthermore, the vanishing 
condition of the second-order derivative is a measure of the onset of the instability against the 
excitation and amplification of a particular fluctuation mode. 

In order to grasp an essential feature of a pre-transition phenomenon, we start with a 
simple Landau-type free energy expansion. Following Sima's prescription [2], a free energy 
is expanded up to sixth order of a single-order parameter, §, in the following way: 

fc2 M t6 

F = F0 + a{T-T~y- + bS- + ch- (1) 

where FQ is the free energy for a random solid solution, a, b and c are expansion coefficients 
and T" is the spinodal ordering [3] temperature. Due to the symmetry of the 1:1 stoichiometric 
composition, all the terms with odd exponents vanish. The first-order transformation is 
characterized by the super-cooling and super-heating below and above the equilibrium 
transition temperature, respectively. These are ascribed to the existence of a free energy 
hump above (below) the transition temperature which leaves the ordered (disordered) phase in 
a metastable state. The assignment of positive values to a and c and a negative value to b in (1) 
satisfactorily reproduces such a temperature dependency of the free energy curve. In fact, the 
spinodal ordering temperature T~ is defined as that at which the free energy hump vanishes 
below the transition temperature and the onset of instability of the super-cooled disordered 
phase sets in. The counterpart corresponding to above the transformation temperature is 
spinodal disordering temperature denoted by T+, for which the instability condition for a 
super-heated ordered phase is defined. 

The second-order derivative of (1) yields the generalized susceptibility x given by 

d2F 
X   ' = 

ü 1/2 
. = An   I T. + — \ -T 

a?2 
-' - " -   -4a 

A 
Tl+4 

A 
r'+4 

-|'/2 
+ A1'2}        (2) 

where Tt is the transition temperature and A is defined as A = T+ - T~. For the second-order 
transition for which T+ and T~ merge into Tt (more precisely Tc, where c stands for critical), 
A vanishes. In fact, it is confirmed that in the limit of A -* 0, (2) satisfactorily reproduces 
the classical value of the critical exponent of unity. This is the thermodynamic origin of the 
critical slowing down for the second-order transition. 

Near the transition temperature, i.e. T ->■  Tt (T  <  Tx) for the first-order transition, 
equation (2) can be further simplified as 

1 1 
ö3A + 8(7t-7) 

(3) 

One realizes that the divergent behaviour towards the infinite value is suppressed due to the 
existence of the A term. However, the value of A for an actual alloy system is quite small 
compared with Tt, and the susceptibility is expected to grow, indicating the flattening of the 
free energy surface, which results in the loss of the thermodynamic restoring force against 
configurational fluctuation. Hence a phenomenological analysis based on Landau-type free 
energy expansion suggests an occurrence of a phenomenon similar to the critical slowing down 
of the second-order transition. 

For the first-order transition, however, more complications arise, due to the spatially 
inhomogeneous, nucleation-growth events involving wetting phenomena. As the temperature 
approaches Tt, the free energies of the two competing phases become equivalent, leading to the 
loss of the driving force of the phase transition. Hence, two effects are mixed near the transition 
temperature and obscure each other. The present calculation only concerns the, former, effect 
originating from the flattening of free energy surface. 
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The accuracy of the theoretical analysis totally depends on the free energy to be 
employed. The key to the successful calculation is to incorporate a wide range of atomic 
correlation, which plays a significant role, in particular, near the transition temperature. 
Among various theoretical tools of statistical mechanics calculations for alloys, the cluster 
variation method (CVM) [4] has been recognized as one of the most powerful means to meet 
such a requirement. By combining with electronic structure total energy calculations, even 
first-principles studies have recently been put forward for thermodynamic properties at finite 
temperatures. 

The path probability method (PPM) [5] is the natural extension of the CVM to the 
time domain and, therefore, inherits many advantageous features from the CVM. It is 
generally demonstrated that the steady-state quantities at an infinite time limit derived by 
the PPM calculation converge to the equilibrium values predicted by the CVM. Therefore, the 
combination of the CVM and PPM is best suited to perform synthetic study of non-equilibrium 
transient phenomenon towards the equilibrium state. 

In the present study, we focus on Ll0-disorder transition at a 1:1 stoichiometric 
composition, and we calculate the temperature dependences of the relaxation time and the 
generalized susceptibility by the PPM and the CVM, respectively. The main emphasis is 
placed on the interpretation of the non-monotonic behaviour of the relaxation time in terms of 
the susceptibility in a consistent manner. Also, first-principles calculation of the susceptibility 
is attempted for the Cu-Au system. The organization of the present report is as follows. In 
the next section, the theoretical aspects of the CVM and the PPM are summarized. Since 
the technical aspects of the first-principles calculation have been amply demonstrated [6], we 
present merely a framework of the cluster expansion method [7], which plays a key role to 
combine the internal energy and entropy terms into a free energy formula. The final section is 
devoted to results and discussion. 

2. Theoretical background 

2.1. CVM and first-principles calculation 

Theoretical aspects of the CVM and resultant thermodynamic quantities, including phase 
diagrams, have been amply demonstrated in the literature. Hence, in the present section, we 
simply reproduce only the necessary formulae employed in the present analyses. 

For a fcc-based system, mainly due to the frustration effects, the pair approximation does 
not provide satisfactory results, and it is known that the minimum meaningful approximation 
is the tetrahedron approximation [8] for which the entropy term is written as 

^-^dhmtmUiM^j^ (4) 

where x,-, y,-7- and wijki are the cluster probabilities for point, pair and tetrahedron clusters, 
respectively, and subscripts i, j, k and I designate an atomic species. Note that the expression 
above is for a disordered phase and one needs to distinguish sub-lattices in dealing with an 
ordered phase. In the case of the L lo ordered phase, which is our main concern in the present 
study, degeneracy of the cluster probabilities for a disordered phase is lifted as x,- —> xf(l) 
and xf (1), ytj -» yffW, y"f(4) and yff(l) and the tetrahedron probability is rewritten as 
w<uu • The number in the parenthesis indicates the multiplication factor for each cluster 
probability. 
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The one-step higher approximation beyond the tetrahedron approximation is tetrahedron 
octahedron (T-O) approximation [9-11] for which the entropy term is written as 

(n,-,M(^7A')!)8(n,(^)!) 
JT-0 = fcn In (5) 

(n;,M,,,W,»(Af%A.'„,„)!)(n,-../.u(^^A')!)2(n,y(^7)!)6 

where triangle (njk) and octahedron cluster probabilities (D,;I/,„„) are new participants. 
The advantage of the T-0 approximation is that the second-order pair is involved as a 

diagonal of the octahedron cluster and, therefore, the second nearest neighbour pair interaction 
energy can be explicitly incorporated in the free energy through the internal energy term. 

Within the cluster expansion method [7,12], the internal energy E<-'") of a phase specified 
by m is written as 

£w({£}) = = V 
L^ v^ 

('») (6) 

where Vk and %k are effective cluster interaction energy and correlation function for a 
fc-point(type) cluster, respectively. The formal definition of the correlation function is the 
ensemble average of the spin variable a which takes either +1 or —1 depending upon the A 
or B atoms, respectively. It should be noted that the correlation function of k cluster depends 
on the phase of interest, but the effective cluster interaction energy is common once the alloy 
system is specified. 

In actual practice, for a given alloy, the total energy Eim) and the effective interaction 
energy Vk constitute a vector while the correlation function i-k'" is expressed by a 
matrix. The reader interested in more details of the correlation functions should consult 
the original literature [9,10]. We simply provide the concrete form of the matrix for 
A (fee), A3ß(Ll2), AB(Llo), AB3(Ll2) and ß(fcc) with m = 1, 2. 3, 4 and 5, respectively: 
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or 

(7) 

(8) 

Note that cluster with k = 0 is called a null cluster. 
In general, the total energy E{m) can be obtained by electronic structure calculations for 

a ground state. While the atomic arrangement at the ground state of a given phase is uniquely 
determined and, therefore, one can assign a value to each components of a correlation matrix 
such as equation (7). Hence, by knowing both E and £, one can obtain effective interaction 
energy v by a matrix inversion: 

v = [t)-l-E. (9) 

The significance of the correlation function is that a set of correlation functions constitutes 
independent variables to describe atomic configurations at a given state, while the cluster 
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probabilities defined in the entropy expressions (equations (4) and (5)) are mutually dependent 
through normalization conditions and reduction relationships. It can easily be demonstrated 
that the cluster probability and correlation functions are linearly related through, for example, 

Xi = -(l + i$i) (10) 

yu = y\\ + (1 + 7)£i + i/fc] (11) 

and 

wtjki = T4 [1 + (i + j + k + Z)|i + (ij + ik + il + --- + kl)& 

+(ijk + ijl + ■■■ + jkl)& + ijkl&l (12) 

Hence, by combining the internal energy given by (6) with entropy by equation (4) or (5), 
the free energy is symbolically expressed as 

F = F(T, {vk}; £i, §2. • • •, U) = E({vk}; &, |2,..., |£inJ - TSfo,b, ■ • •, &»)      (13) 

where Emm represents the tetrahedron and 5max is either the tetrahedron (equation (4)) or T-0 
(equation (5)) clusters. The equilibrium state is determined by minimizing the free energy 
with respect to a set of correlation functions under a given temperature T and effective cluster 
interaction energies {i^}. It is noted that, in the actual practice of the energy calculations, 
the total energy £'(m) of equation (6) is obtained as a function of the lattice parameter r (or 
equivalently volume for a cubic structure). Then, the resultant effective interaction energy is 
also a function of r, which imposes an additional optimization for a pressure, p. The conditions 
of the equilibrium state are finally given as 

and 

2.2. PPM 

dF 

Wi 

dF 

~dr~ 

= 0 (14) 

= -P- (15) 

As was mentioned in the previous section, the PPM is the natural extension of the CVM to 
the time domain. One of the unique features of the PPM is that the PPM does not explicitly 
deal with state variables such as cluster probabilities (or correlation functions) or their time 
derivatives. Instead, Path variable, E^,^(t; t + At), is defined to describe the transition of a 
state variable for a cluster p during an infinitesimal time At in the following way: 

P4,(t + At) = Pi,(t) + J2 Cx,(SMif (t :t + At) (16) 

where ijr, <p, X, ß and f represent an atomic configuration and C\^ is a coefficient term, the 
form of which depends upon the kinetics. 

One may readily grasp the arithmetic insight by exemplifying the point path variable 
EV,0 it; t + At) = Xij which describes the transition from i to j on a point cluster as follows: 

xi(0 = Xi,i + X1>I (17) 

and 

xi(t + At) = Xhl + Xi t (18) 
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where x\ is a point cluster probability representing a concentration of A. Hence, corresponding 
to (16), one may obtain 

xi(t + At)=xl(t)-Xl] + X]] (19) 

with C] j = — 1 and C, , = 1. In a similar manner, one can confirm the relationships given 
by equation (16) for a larger cluster. 

Since the path variable characterizes the microscopic path of the transition of atomic 
configuration, the formulation of path variables totally depends on the kinetics adopted in 
the study. In fact, the present study deals with a simple spin kinetics (Glauber dynamics) 
[13], whereas exchange kinetics (Kawasaki dynamics) [14] and vacancy kinetics allow more 
freedom of the path and, therefore, the formulation based on (16) becomes further complicated. 
One major disadvantage of spin kinetics is the fact that the species is not conserved with time. 
However, when concentration-independent pair interaction energy is adopted, it has been 
demonstrated that the conservation of the species is assured at a 1:1 stoichiometric composition 
without imposing any additional constraints. In order to avoid numerical complications and to 
observe the conservative feature of an alloy system, the present calculation is limited at a 1:1 
stoichiometric composition. The present study, based on spin kinetics, is, therefore, viewed 
as a precursor to the more complicated vacancy mediated diffusion mechanism. 

A counterpart of the free energy of the CVM is the path probability function P[t; t + At) 
described as the product of three terms, P\, P2 and P3. Each term is given as 

P, = (ÖAOW(X' 2+X2l)(l - 0Af)"(*u+*2-2) (20) 

«-"(-^) (2I) 

and 

(n,j,H"W(*"> (22) 
3      (najl,lll>,npNW:kjl,m,wr\)HUl.JNXlJ\y 

where N is the total number of lattice points, 6 is the spin flip probability per unit time, which 
is further written as 

AG\ 

"i^f) 
where v is the attempt frequency, AG the activation energy and kß the Boltzmann constant. In 
(22) Yijw and Wjjki,m„oP are the path variables for the flipping from one spin configuration to 
another, designated by the subscript(s) (up spin and down spin) before (at time t) and after (at 
time t + At) the comma sign, on a pair and tetrahedron clusters, respectively. In (21) AE is the 
change of the internal energy before and after the flipping events. Within the nearest-neighbour 
pair interaction model, AE is further described as 

2 

A£ = ^v;A£(?)-M,A£,(0 (24) 
i=0 

where p,\ is the effective chemical potential. 
One notices that the product of P\ and P2 corresponds to the Boltzmann factor in the free 

energy, while, as is implied by the close resemblance between P3 and ST of equation (4), P3 
is an entropy-like term describing the multiplicity of the microscopic path. The maximization 
of the path probability function P = P\ P2P3 with respect to the path variables determines the 
optimized set of path variables: 

dP 

v expl -T-^ I (23) 

as ̂ .4> / T 

0 (25) 
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which corresponds to the minimization condition given by equation (14) for the CVM. Then, 
once path variables are optimized for each time t, a cluster probability at time t + At is 
determined through (16), and the repetition of this procedure traces the most probable path of 
time evolution. 

3. Results and discussion 

As was described in the previous section, the main concern of the present study is the 
Ll0-disorder transition rather than L^-disorder, for which pseudo-critical slowing down 
phenomenon through electrical resistivity measurements are reported [1]. This is because of 
the simplicity of the PPM calculations at a 1:1 stoichiometry with spin kinetics. However, 
we note that the first-order character of the transition was confirmed for Ll0-disorder and the 
essential feature of the analysis is not at all hampered [15]. 

Within the tetrahedron approximation of the CVM, the transition temperature determined 
at a 1:1 stoichiometric composition is /CB^I/I^I = 1-89 where 112,1 is the effective nearest- 
neighbour pair interaction energy. Hereafter, we simply describe the temperature by T, but 
authors should keep in mind that the temperature is hereafter always normalized with respect 
to v2,i/kB. 

We up-quench the system from temperature T = 1.2 to various temperatures below the 
transition temperature. From the time evolution behaviour of the long-range order parameter 
n defined as n(t) = x"(t) - xf (?), which is calculated by the PPM, the relaxation time x 
is obtained. In fact, the electrical resistivity often measured by the relaxation experiment is 
closely related to the long-range order parameter through Rossiter's formula [16]. It is noted 
that the relaxation time calculated in the present study is defined as follows: 

r](t) = n(t = 00) - {rj(t = 00) - n(t = 0)} • exp ( —- ) (26) 

where no and n^ are, respectively, the long-range order parameters at the initial state and at 
thermal equilibrium at a given temperature. A typical result of the temperature dependency is 
shown in figure 1 [17]. Note that the time is normalized with respect to the spin flip probability 
throughout this study. One confirms that the relaxation time once decreases with an increase 

Figure 1. Temperature dependency of relaxation time at a 1:1 stoichiometry calculated by the PPM 
with v = 10 and AG = 12 in (23). 
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Figure 2. Temperature dependency of susceptibilities calculated by T-O approximation of the CVM 
with Ä(u2,2/V2,i) = 0.0 (0), -0.2 (D) and -0.5 (A) [18]. The temperature axis is normalized 
with respect to the transition temperature for each <5 value. 

of temperature, then increases again through the transition temperature T{ = 1.89 towards 
temperature T = 1.94. As is demonstrated for the susceptibility calculations below, this 
particular temperature, T = 1.94, is found to be the instability temperature T+ of metastable 
Llo ordered phase up-quenched in the disordered-phase region. 

In order to analyse the general aspects of the susceptibility, we first employ the T-0 
approximation which is able to incorporate both first and second nearest-neighbour pair 
interactions. The key parameter of the analysis is the ratio of the second to the first nearest- 
neighbour pair interaction energies, S = V2.ilv2.\- It 's noted that 32 kinds of independent 
configurational variables are required to describe the Llo ordered phase within the T-0 
approximation, which is in marked contrast with the Landau-type approach in which only a 
single order parameter £ was introduced. The generalized susceptibility is calculated through 

where £" is the point correlation functions for the a sub-lattice. When the S value is changed, 
the resultant transition temperature also changes. Hence, the temperature is normalized 
with respect to the transition temperature for each S. The results are shown in figure 2 
[18]. One notices that the susceptibility increases approaching the transition temperature. 
This is more apparent with decreasing S values. In fact, with decreasing S, the original fee 
lattice starts to decouple into cubic lattices formed by the second nearest-neighbour pairs, 
and the order-disorder transformation on a fee lattice is reduced to a clustering reaction 
on the cubic lattice. Hence the second-order transition character comes in sight with 
decreasing S values. Although the critical exponent value is not explicitly estimated, it is 
expected that at an infinite (negative) value of S, the classical exponent of unity should be 
reproduced. 

Shown in figure 3 is the temperature dependency of the susceptibility calculated within 
the tetrahedron approximation, which is of particular interest since the PPM calculations 
of relaxation time (figure 1) is carried out within the same tetrahedron approximation. 
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Figure 3. Temperature dependency of the susceptibility calculated within the tetrahedron 
approximation of the CVM. The transition temperature is Tt = 1.89 and the instability temperature 
is T* = 1.94. 

One certainly confirms that the susceptibility increases towards the temperature T = 1.94 
at which the relaxation time obtained by PPM increases exponentially. The PPM calculation 
of the pseudo-critical slowing down phenomenon shown in figure 1 is, therefore, interpreted 
as the flattening of the free energy surface. With an increase in the annealing temperature, 
the diffusion (spin flip) events are enhanced by a thermal-activation process, while the flattening 
of the free energy surface is manifested towards the instability temperature T+ = 1.94, which 
leads to the loss of the thermodynamic driving force for the relaxation. Combination of 
these two effects yields the non-monotonic behaviour of the relaxation time. It should be 
noted, however, that the entire relaxation behaviour depends on the magnitudes of the attempt 
frequency v and the activation energy AG. A more systematic PPM study on the dependency 
has been underway and will be reported elsewhere [17]. 

It is desirable to investigate temperature dependency of the relaxation time for a real 
alloy system. Unfortunately, however, the PPM calculations face serious difficulties when 
extended to a real alloy. As was described in the previous section, this is due to the proliferated 
microscopic paths for an exchange or vacancy-mediated diffusion mechanisms. Furthermore, 
although the saddle point energy AG in (23) is a deterministic factor in controlling the alloy 
kinetics, the dependency of the saddle point energy on a local environment is too subtle to be 
estimated with a desired accuracy. Therefore, our attempt of applying the present analyses is 
limited to the calculation of the susceptibility. We focus on the Cu-Au Ll0 ordered phase for 
which the increase of relaxation time estimated by electrical resistivity measurement has been 
determined at a 1:1 stoichiometric composition [19]. 

The effective interaction energies are evaluated through the cluster expansion method 
with total energy calculations via the augmented spherical wave method [6]. The entropy 
term is evaluated within the tetrahedron approximation. The derived transition temperature Tt 

is 908 K, which is overestimated as compared with the experimentally-determined transition 
temperature of ~650 K. The overestimation has been ascribed to the neglect of local lattice 
relaxation effect [6], which is emphasized for a system consisting of elements with large 
difference in atomic size. 
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Figure 4. Temperature dependency of susceptibility (♦) and long-range order parameter (■) 
for Cu-Au at a 1:1 stoichiometric composition. The experimentally obtained long-range order 
parameter (O) is also plotted. The transition temperature 7i and instability temperature T* obtained 
by this calculation are 908 K and 926 K, respectively. Note that the temperature axis is normalized 
with respect to the transition temperature. 

The effect of the neglect of the local relaxation on the susceptibility is not fully 
elucidated. This should be the subject to be settled in the future calculations. In particular, 
more sophisticated first-principles calculations recently proposed by Ozolins et al [20,21] 
incorporating local relaxation effects is expected to provide a satisfactory solution. In this 
study, however, we simply scaled the temperature axis by normalizing with respect to the 
transition temperature. The calculated temperature dependency of the susceptibility is shown 
in figure 4 together with a long-range order parameter. The calculated instability temperature 
T+ is nearly 1.020 (926 K) in the normalized (absolute) temperature scale. This value is close 
to that 1.026 (1.94/1.89), derived by the tetrahedron approximation. 

One can confirm the sharp, rising behaviour near the transition temperature, indicating 
the flattening of the free energy surface. However, the comparison of the calculated long- 
range order parameters with experiment [22] plotted by open circles suggests that the first- 
order character is less emphasized in the present calculations. Hence, the sharpness of the 
susceptibility may be exaggerated. The cause of the underestimated long-range order may be 
attributed to the neglect of the local lattice relaxation or tetragonal distortion. These should 
be clarified in the future calculations. Finally, we emphasize, again, that the experimentally 
observed slowing down behaviour is a combined effect of the flattening of the free energy 
surface and the reduction of the difference of the free energies between the ordered and 
disordered phases. The experimental separation of these two effects is desirable with a well 
controlled rapid up-quenching operation. 
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Abstract. The gas-liquid phase transition of a mono-atomic molecular fluid is studied by placing 
atoms and vacancies in cubic cells of a simple cubic lattice and by reducing the lattice constant to 
infinitesimal. The cluster variation method is used to formulate the entropy for three choices of the 
basic clusters: all shapes and orientations of cell pairs, all cell triplets and all cell quartets. The 
first two cases fail to derive a stable liquid phase. When we introduce certain approximations to 
the basic iterative equations of the quartet case, a stable liquid phase appears, although numerical 
results violate certain thermodynamic relations. The triplet formulation leads to the Persus-Yevick 
equation as a linearized form, and is also related to the hyper-netted chain equation through a slight 
modification. 

1. Introduction 

In statistical mechanics of cooperative phenomena [1], including the conventional cluster 
variation method (CVM) [2,3], species are located on lattice points and their permutation is 
the main issue. In order to generalize the treatment to gas and liquid phases, the present paper 
makes the lattice constant decrease to the infinitesimally small limit. It is to be noted that the 
most of equations of the present paper can be derived by a different approach [4,5] based on 
the CVM entropy and using the distribution functions. Since the cell-size reduction has its 
own merit and future, it is worthwhile to publish the present work 

We consider a simple cubic lattice and distribute atoms over cubic cells, placing at most 
one atom in a cell. We assign j = 0 and 1 to a vacant cell and an occupied cell, respectively. 
The probability of finding a j cell is written as [j]. In applying the CVM, we choose three 
cases for the basic cluster: all 2-cell (pair) clusters, all 3-cell (triplet or A) clusters and all 
4-cell (quartet) clusters. 

The entropy S for these cases can be derived using the correlation correction factor 
formulation [6] from a unified formulation. 

exp(S/fcB) = VKceiiG2-cellG3-cellG4-cell (1.1) 

where Wceii is the number of ways of distributing atoms over N cells, and G's are the correlation 
correction factors. They are defined as 

AM 
Weell = 

G 2-cell = 1| 

{Cell}w 

{Cell j}N {Cell k}N 

N\{Pa.irjak}N 
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N !{Pair ja k] # (Pair kb m }A< {Pair mc j} N 
G3-CCH = 11 

■n M-ccll 

{Cell j}N{Ce\\k}N {Cell m}N{3-ptajakbmc}N _ 

{j}{k}{m}{n}{Akmn}{Ajkm}{Ajmn}{Ajnk} ' 
(1.2) 

_N\{km}{kn}{kj}{mn}{nj){jm}{Quartet jkmn)_ 

The braces are for a product of factorials of probability variables [2], and j, k, m, n are the 
cell names. Details of the notation will be given in later sections. 

2. 2-cell cluster (pair) treatment 

The basic clusters are cell pairs of all distances and all orientations located anywhere in the 
system. In addition to the cell probability [j], we define [jak] as the probability of finding 
the configuration (ja k), i.e. j cell at the base and k at the tip of a vector a. The reduction and 
the normalization relations are 

[j] = Y^Uak] 1=I>1- (2.1) 
k j 

The entropy S is derived using the WcciiG2-Ccii Part of (1.2). In the product in C?2-ceii we 
suppress translational symmetry and include all shapes and orientations of cell pairs. In the 
probability variables, S is written as 

1H7 = -1 - J2
L

(UD + \ Y (T,
L
W + EL

(W
)
 -J2L{[Jak]))       (2-2) 

B
 ; <*    ^    j k jk ' 

where we use the function: 

L[X] = X\r\ X - X. (2.3) 

The a summation includes both a and —a, and the factor | is to avoid double counting. 
The pair-wise potential is written as e(ja k). This vanishes unless both j = 1 and k = 1. 

The energy for a system is 

!^ = ±Yie(jak)[jak]. (2.4) 
jak 

We write the chemical potential of a particle n\ as /x, and define ß0 = 0 for a vacant cell. 
Then the chemical potential term for a system of NA = N[l] particles is 

ßNA = Nj2lßßj- (2-5) 
;' 

In the subsequent minimization of the grand potential, we treat both [j] and [jak] as 
independent. All pairs (jak) sharing j satisfy the constraint relation: [j] = T,k[jak]. We 
use Lagrange multipliers a„j and write the constraint term as 

Ca = 2>ay([;] - Y}iaA = L \a°jW - \ I>«; +«0y)Üa*]l. (2.6) 
ja I k > ja    I Z    k > 

Using these relations, we write the grand potential Q = F — IXNA = — pV as 

ßy s ß^L = ßElÜL _ ^L _ ßl^A + Ca-ßx(\- YU]) (2.7) 
H HN N        kBN     H   N r   V       Z-^   7 

where ß = l/k^T, and the last term is for the normalization of [j] in (2.1). The volume of 
the system is written as V. 
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When Q is minimized with respect to [j] and [jak], respectively, we obtain 

[j] = exp I - ßX + ßßj - J2 <*aj} (2-8) 

[jak] = [j][k]exp{-ßs(jak) + aaj +aak). (2.9) 

When these are satisfied, (2.7) is simplified to lead to X 

X = -* = -Q/N = pv v = V/N (2.10) 

where i; is the volume of a cubic cell. 
When we substitute (2.8) and (2.9) in the reduction relation (2.1), we obtain simultaneous 

equations for the Lagrange multipliers exp(aao) and exp(aal). They reduce to a quadratic 
equation for their ratio and can be solved analytically. For the solution, it is convenient to 
write c = [1] for the probability of finding an occupied cell, and hence [0] = 1 — c. Since 
c reduces to infinitesimal with the lattice constant, the solution can be written to the lowest 
power of c. Using the abbreviation s(a) = e(lal), the solution is written as 

«o0 = (e-B(o)-l)c2/2 + O(c3) 

aQl = -(e-£(a)-l)c + 0(c2). (2.11) 

When we use (2.11) in (2.9) and when e(lol) ^ 0, we can derive the radial distribution 
function g(a) of the common use as 

g(a) = [la l]/c2 = e"£(a){l - (e"£(a) - l)c}2 + ■ • ■. (2.12) 

When e(a) = 0, the two end cells of a are not correlated since [la 1] = c2. 
The equation of state can be derived by substituting X = pv of (2.10) in the [j = 0] 

equation of (2.8) and using the solution of aao in (2.11) as 

ßpv = c- (c2/2) Y,{&~sM ~ 1 + °(c)}- (2-13) 
a 

Defining the particle density p = c/v = NA/V, we can rewrite this for an infinitesimal c as 

JL. = p - -p2 [da (e^E(o) - 1) (2.14) 
kBT      P     2P  A 

where * indicates to integrate a over all space. The ratio [l]/[0] from (2.8) leads to the chemical 
potential \i, which can be transformed to the integration form as 

ßß = In v + In p - p j do (e-
£(a) - 1). (2.15) 

The diverging In v is irrelevant, because only differences of fi's are physically significant. 
When we examine the pressure equation in (2.14), we see that this quadratic expression 

does not show the van der Waals-type phase transition. Therefore, the 2-point cluster treatment 
does not lead to a liquid state. 

3. 3-cell cluster (triplet) treatment 

In addition to [j] and [jak] in (2.1), we introduce [jakbmc] for the probability of a cell 
triangle made of three vectors o, b and c = —(a + b) which the connect three configurations 
j, k and m. The following reduction relation is added to those in (2.1). 

[jak] = 2_[jakbmc]. (3.1) 



254 R Kikuchi and C M van Baal 

Our notation is related to the conventional 3-body distribution function by 

g(r\,r2,r3) = [\r2 -r,lr3 -r2lr, - r3]/[l]
3. (3.2) 

The entropy is the WcciiG2-cciiG3-ceii part of (1.1). The product for G3.ccn goes over the 
triplets of every shape and orientation with the translational symmetry suppressed. As for the 
energy, £pajr in (2.4) can be supplemented by the 3-body interactions: 

17 1 

-rp = —   2Z  fUakbmc)[jakbmc]. (3.3) 
jakbm 

The grand potential is then written as 

£pair       ^3-pt\        / Spair        ^3-pt \        flM^4 

(3.4) 

where CY is the constraint term for the reduction relations for triplets: 

Cy =  ^ I Ycjakbljak] - - Y^iYcjakb + Yakbmc + Ybmcja) [j a kb in c] \ . (3.5) 
jakb I m ' 

The equilibrium is derived in two steps. The first is to minimize /}* with respect to [j], 
[jak] and [jakbmc], and the second is to solve a's and y's to satisfy the reduction relations. 
The first step leads to three sets. The first two are from 8£2/8[j] and 8Q/8[jak]: 

[j] = exp{-ßX + ßßj - ^2aaj (3.6) 
a 

[jak] = [j][k]exp\ - ßs(jak) + aaj + aak-^ycjokh\. (3.7) 

In formulating the third set for 8Q./8[jakbmc], we make use of the result of the second step 
that each of a's and y's is of the order of c or smaller. Then the third set leads to 

[j a k][kb m][mcj] 
[jakbmc] = r.,r,ir   , exp(-/3^(jakbmc)). (3.8a) 

[j][k][m] 

We note that when ^(lalfelc) vanishes, [la 161c] reduces to Kirkwood's superposition 
approximation [7]. This is an indication that the CVM entropy expression is closely related to 
the superposition concept. The special case of (3.8o) for j — k = m — 1 leads to the triplet 
distribution function: 

g3(a,b) = [lalblc]/c3 = g(a)g(b)g(c)exp(-ßi,(jakbmc)). (3.8ft) 

In (3.7), the sum of j/'s over the entire b changes into an integral, to result in 

g(a) = [lol]/c2 = exp{-/Je(a) - pln(a)} (3.9) 

where 

(a)^pj -pln(a) = p / db[(g(b) - \)(g(c) - 1) + g(b)g(c){cxp(-ß^(]a 16 lc)) - 1}].     (3.10) 

This is an iterative equation to be solved for the distribution function g(a) for given T and p. 
The natural iteration method [8] can be used. Actually, g(a) is a function of A = \a\. 

The ratio [l]/[0] formed from (3.6) leads to ß as 

ßß = In v + Inp - p f do[g(a) - 1] + j]P
2 j da f d6[3 - (g(a) + g(b) + g(c)) 

-(g(a)g(b) + g(b)g(c) + g(c)g(a)) + 3g3(a, b)]. (3.11) 
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The [j = 0] equation of (3.6) leads to the equation of state as 

ßp = p - \p2 f da [g(a) - 1] + j/ f do f db [2 - (g(a) + g(b) + g(c)) + g3(a, b)]. 

(3.12) 

When p/n(a) in g(a) and the p3 integral are missing, (3.12) reduced to the pair case (2.14). 
As for the van der Waals loop, it was found that the natural iteration method does not converge 
for the range of T and p corresponding to the liquid state, and it has been unsuccessful to 
derive the van der Waals loop. However, a liquid-like state is derived for a system confined 
inside a narrow slit [4] from a linearized equation of (3.12) [4,9]. 

It can be shown [4] that the Persus-Yevick equation can be derived by linearizing (3.9) 
in p. When f(\a 16 lc) = 0, we expand g(b) = e"£(6) + O(p) in the integrand of (3.10) to 
derive 

g(a)e£(a) = l + pjdb(g(c)- l)g(b)(l - e£(b)). (3.13) 

This is the equation obtained by Persus and Yevick [10]. 
In g(a) of (3.9) and (3.10), we make f(la lb lc) = 0 and modify [4] (3.10) as 

-pln(a) = pfdb[(g(b) - 1 - plu(b))(g(c) - 1)]. (3.14) 

Then g(a) of (3.9) becomes the hyper-netted chain approximation. 
We compare various approaches by expanding g(a)ee(o), or g(T"i2)exp{e(r12)} with 

ryi = T2 — r\, in powers of p and compare coefficients of the p2 term: 

g(m) exp{e(r-12)} = 1 + A(rl2)p + C(rn)p2 + 0(p3). (3.15a) 

We note C{jrn) is a sum of four integrals: 

C(rl2) = qiHi(rl2) + q2H2(ri2) + q3H3(rn) + q4H4(r12) (3.15b) 

where the H's are the following integrals and the g's are numerical coefficients: 

H](ri2)= / dr3 / dr4h(rn)h(ru)h(r23)h(r24) 

H2(rn) = / dr3 / dr4h(rl3)h(r24)h(r34) 

H3(rn)= / dr3 / dr4h(ri3)h(ru)h(r24)h(r34) 

H4(rn) = dr3     dr4h(rl3)h(ri4)h(r23)h(r24)h(r34)                      (3.15c) 

with 

A(r34)=*(r34)-1. (3.15d) 

In these integrals r\ is at the origin, r2 = r2\ is fixed, and the integration is over r3 and r4. 
Table 1 shows how the q's depend on the approaches. The table is self-explanatory. The last 
line is the quartet result of the next section. 
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Table 1. The coefficients qj in (3.15). 

Hi       H2      Hi      H4 

Pcrcus-Yevick 0 12        0 

Hypcr-netted chain ^12        0 

CVM triplet ^220 
CVM quartet and exact \        1 2 ~ 

4. 4-cell cluster (quartet) treatment 

In the quartet, four cells j, k, m and n are connected as six pairs (jak), (kbm), {men), (mdj), 
(nek) and (nfj). The vectors satisfy the closure relations a + b+ d = 0, b + c+ e = 0 and 
a + b + c+ f = 0. The probability of finding a quartet of this configuration can be written as 
[jakbmen], since d, e and / are derived from other vectors. 

The entropy S4_ccn is the entire product of (1.1). Note G4.ccii in (1.2) is written using only 
the cell names. The energy is the sum of £pair in (2.4), E3.pt in (3.3) and the 4-body interaction: 

—- = —    ^    x(jakbmcn)[jakbmcn]. (4.1) 
jakbmen 

The grand potential £2 is written in the same way as in (2.7) and the triplet case. When 
we minimize Q with respect to [jakbmen], this function is written as an extension of (3.7). 
One of them is the quartet distribution function [la 16 lcl]/[l]4 = g4(a, b, c): 

i    u    ^        g3(a,b)g3(a,b+c)g3(a+b,c)gi(b,c) 
g4(a,b,c) = -——;  — —— exp(-0x(lal61cl)) (4.2) 

g(a)g(a + b)g(b)g(a + b+ c)g(b + c)g(c) 

where we use 

,  ,      [lal] ,    ix      [lalbl] 
g(a) = TTF      *3(a'b)sLTiirJ- (4-3) 

When xijakbmcn) = 0, (4.2) reduces to the superposition relation derived by Fisher and 
Kopeliovich [11]. 

Minimization of Q with respect to [la 16 1] leads to the triplet distribution function: 

g3(a, b) = g(a)g(b)g(a + b) exp{-ßf(\a \b\)-phu(a, b)} (4.4) 

where /] 11 (a, b) is an integral defined as 

a,b) = p I i pln\(a,b) = p / dc 
t        / •>       tu      ^       ,      u      ^     S3(a,b+c)     g3(a,b+c) 
1 - g(c) - g(b + c) - g(a+b+c) + — + 

g(a) g(a + b) 

gi(b,c) _ g4(a, b, c) 

g(a+b)        gi(a,b) 

The pair distribution function is derived by minimizing Q with respect to [la 1] as 

(4.5) 

g(ri2) = exp[-/3£(rl2) - p1\i(rn)] (4.6a) 
2 j 6 

-p/i2(ri2) = P Y, Jf{r^ ~ iP2 H Jj(r^ (4-6ft) 
7=1 j=3 

Jj(r 12) = 

dr3yj(r]2,r3) j = 1,2 (4.7a) 

_/dr3dr4y;(r12,r3,r4) j = 3, . ..6. (4.7/,) 
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With the abbreviation g23 = g(?"23) we write ys as 

/l0*12, r3) = (gi2 - l)(g23 - 1) 

Y2(rn, r3) = gi3g23(Ai23 ~ i) Am=exp(aAm) (4.8a) 

K3(n2, r3, r4) = (g34 - I)(gl3gl4 - I)(g23g24 - 1) 

K4(ri2, n. ^4) = 834gl3gu(Am - l)(g23g24A234Ai23Ai24 - 1) 

Ys(r\2, ri, r4) = g34g23g24(A234 - I)(gl3gl4^123^124 ~ 1) 

Y(,ir\2, r3, r4) = gl3gl4g23g24(g34 - IXA123A124 - 1)- (4.86) 

Ai23 or «A123 for a triplet A123 is written using y7(A123, r4) with 7 = 7-10, which are to be 
solved iteratively from the following equations: 

10 

«A123 =PY. I drvy,-(A123, r4) (4.9a) 
1U /• 

2' 

+ ■ 

y7(A123, r4) = (gi4 - l)(g24 - l)(g34 - 1) 
y8(A123, r4) = ^14^24(^123 - l)(g34A234Ai34 - 1) 

y9(A123, r4) = §14^34(^134 - l)(g24A234 - 1) 

yio(A123, r4) = g24g34(gi4 - 1)(A234 - 1). (4.%) 

After a&jkm are solved for all Ajkm from (4.9), g(ri2) is to be solved in a second set of 
iterations of (4.6)-(4.8). 

Minimization of Q with respect to [j] leads to ß and p equations, as was commented on 
in previous sections. The latter is 

ßP = P~ \p2[g{a) - 1] + j/ Jdafdb[2- (g(a) + g(b) + g(a + b)) + g3(a, 6)] 

-pA f da I db j dcQ (4.10a) 

where Q = 6-2Pi + P2 + T - g4(a, b, c) 

Pi = g(a) + g(b) + g(c) + g(a, b) + g(b +c) + g(a+b+c) 

P2 = g(a)g(c) + g(b)g(a + b + c) + g(a + b)g(b + c) 

T = g3(a, b) + g3(b, c) + g3(a, (b + c)) + g3((a + b), c). (4.106) 

We note that the p, p2 and p3 terms are the same as those in (3.12) for the triplet case. The 
effect of the p4 term on the p against p curve can be seen by numerical computation. 

Since the two-stage iteration to solve all y's is time consuming, in order to obtain semi- 
quantitative information of the solution, we solve an approximated set of y's. First in the sum 
(4.9a) we keep only the 3/7 integral to avoid iteration for As so that 

«A123 ^ pdr4(g14 - l)(g24 - 1)(#34 - 1)- (4.11a) 

The second approximation is to keep only the j = 3 term in the second sum of (4.66): 

-p/i2(ri2) « plMrn) + ^2(^12)] - p2J3(rl2)/2. (4.116) 

For the numerical calculation of p and /A, we use (3.12) and (3.11) for the triplet case without 
the 3-body interaction i/r, i.e. using the superposition relation in (3.86). We use a 6-12 Lennard- 
Jones potential. The depth of the potential is written as — s, and ro is its position. Figure 1 is 
for the p against p curve at kT/e = 1.5. This curve shows the van der Waals loop, and hence 
the stable liquid phase. The pair radial distribution function g(r) at p = 0.60/r^3 in the liquid 
phase is in figure 2. 
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Figure 1.  Equation of state based on the simplified quartet treatment using the Lennard-Joncs 
potential and at kT/e = 1.5. 
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Figure 2. The radial distribution function g(r) corresponding to figure 1 at p = 0.60/I-Q in the 
liquid phase. The Ordinate is h(r) — g(r) — 1. 

The critical temperature in this approximation is at about kT/e = 1.7. This is to be 
compared with the value 1.3, which is given in table VII of Hansen and McDonald [12] as the 
summary of experimental and calculation data for Ar. Although figure 2 establishes the liquid 
phase, we note a problem. Thermodynamics requires 

'dp\   = (4.12) 

This relation holds nicely in the gas phase, but fails in the liquid phase, as shown in the p 
against ß plot in figure 3. In all previous applications of the CVM, thermodynamic relations 
never failed to be satisfied, although numerical values are approximate, and this was counted 
as one of the advantages of the CVM. The failure in the present case, therefore, is due to the 
omission of some of the equations derived from the CVM. 
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Figure 3. The p against /x plot corresponding to figure 1. The full curve is for gas and broken 
curve for liquid. The numbers on the curves are the local p values from theory. A short full line 
shows dp/dß = 0.56 for comparison. 

5. Summary, comments and concluding remarks 

We start with a simple cubic lattice as a reference frame in the space, distribute atoms and 
vacancies to cells, and then let the lattice constant decrease to zero, keeping the shape of the 
inter-atomic potential unchanged in real space. The correlation correction factors [6] in the 
CVM [2] are used to construct the entropy for three cases of the basic cluster: all cell pairs, 
all cell triplets and all cell quartets. The first two cases do not lead to a van der Waals-type 
equation of state. Using approximations to the set of basic equations, the quartet case does 
lead to a stable liquid phase. 

We started with the simple cubic lattice, but the equations after c ->• 0 do not show any 
trace of the initial lattice. Therefore, it is judged that the results are independent of the choice 
of the initial lattice. 

When we compare the present method with the Yvon-Born-Green (Y-B-G) approach 
[13], we notice close similarity in the closure procedure. In cutting off the hierarchy in the 
Y-B-G method, Kirkwood's superposition approximation [7] is used. On the other hand, 
the entropy expression of the CVM is inherently based upon the superposition relations, and 
therefore it is understandable that in each section we can point out that the superposition 
approximation holds for the largest cluster of each approximation when there are no many- 
body interactions. The relation between the present and Y-B-G approaches may be understood 
more clearly in the Schlijper and Kikuchi paper [4], which is based on the CVM entropy but 
avoids the c ->■ 0 procedure and is written using the distribution functions. 
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Abstract. We performed local density calculations of the electronic and positron states for a 
300-atom model of bulk amorphous Nio.4Pdo.4Po.2- The procedure for constructing the model and 
the resulting distribution of bond angles and free volume are described. Comparisons are made to 
experiment and to models of amorphous Nio.sPo.2- 

0. Introduction 

Bulk amorphous metals are an interesting class of new materials possessing unique properties 
that offer exciting possibilities for applications to a broad range of technologies. In contrast 
to the previous generation of amorphous metals, bulk amorphous metals can be produced 
in bulk form at cooling rates as low as ~1 K s"1. The understanding of their structure, is 
important to the explanation of their low cooling rate. One of the simplest and most studied 
bulk amorphous metal is Nio.4Pdo.4P02 [1]. We can benefit from the earlier work of Weber and 
Stillinger [2] who developed interatomic potentials for the conventional metallic glass Ni0.sPo.2 
that were constructed specifically to reproduce the measured partial pair distribution functions 
(PDFs) [3]. Structures generated using these potentials have been used as the basis for density 
functional calculations of the electronic conductivity, density of electronic states, atomic 
density, and optical reflectivity [4]. The agreement of these calculations with experiment 
validates the atomic models and the interatomic potentials used in their construction. Recent 
measurements of the PDF and the Pd distribution function of Nio.4Pdo.4P02 [5] provide a 
very useful guide for extending the potentials of Weber and Stillinger [2] to the ternary alloy 
Nio.4Pdo.4Po.2- We describe the use of these potentials to generate a 300-atom unit cell model 
of amorphous Nio.4Pdo.4Po.2- We have confidence in our model because it reproduces the 
measured partial distribution functions, and electronic and positron states calculated with this 
model agree with photo-emission and positron lifetime measurements. The calculations of the 
electron and positron states were performed using the first-principles, order-N, locally self- 
consistent multiple scattering (LSMS) method [6]. We analysed the structure to determine the 
distribution of bonds, free volume, electronic states, and positron states. Comparisons were 
made to models of the conventional amorphous metal, Nio.sPo.2- The most striking contrast 
is in the amount and distribution of free volume. Because free volume is so closely related to 
diffusion and the kinetics of glass stability it may be the key to the glass forming ability of 
Nio.4Pdo.4Po.2- 

O965-0393/00/030261+08S30.00    © 2000 IOP Publishing Ltd 261 
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1. Computational technique: the LSMS method 

The electronic structure of systems with a number of atoms, N in the unit cell as large as 300 
cannot be obtained by conventional band structure methods. The LSMS method is an 0(/V) 
multiple scattering method that is specifically designed for massive parallel processors [6]. 
It relies on several stationary properties of density functional theory to ensure accurate free 
energy determination based on an electron density that is determined self-consistently at each 
site [7]. The LSMS method makes the simplifying assumption that, for the purpose of solving 
the Schrödinger equation, the effective potential beyond a cluster of neighbouring atoms (the 
local interaction zone (LIZ)) surrounding each atom can be approximated by a constant. Each 
atom is then taken to be at the centre of its own LIZ. In the calculations presented here the 
atomic potentials are taken to be spherical and are obtained self-consistently within the atomic- 
sphere-muffin-tin approximation [8]. The LIZ is taken to be a sphere of radius 10 Bohr radii. 

2. Atomic model 

The calculations were performed for a periodically reproduced cubic box containing an 
amorphous network consisting of 300 atoms for which the atomic positions had first been 
relaxed to a local energy minimum via two-body interactions [4]. 

The starting point for generating the amorphous configurations was a previously published 
[4] structure for amorphous Nio.sPo.2- This configuration was generated by random packing, 
followed by interchanges to eliminate P-P neighbours, and finally relaxation via the pair 
potentials of Weber and Stillinger. The Ni0.8Po.2 model structure has PDFs that agree well 
with experiment. We have considerable confidence in this structure because it has been used 
as the basis for many calculations that agree with experiment. However the algorithm that 
eliminated P-P nearest neighbours only frees the sample of P-P pairs that are closer than the 
smallest Ni-Ni distance. To remedy this weakness, without completely abandoning this model 
that has served us well, we scaled V by a factor of 0.5 in the P-P potential in order to force 
greater P-P separation. We also made a very small adjustment to the Ni-P potential. This 
left the model substantially intact, but pushed those few closely-spaced phosphorus pairs to 
positions clearly identifiable as second nearest neighbours. The Pd-containing structure was 
then generated by randomly replacing half of the Ni by Pd. We then relaxed the structure using 
Ni-Pd, Pd-Pd, and Pd-P potentials introduced to augment the already defined Ni-Ni, Ni-P, 
and P-P potentials. The newly-introduced potentials were adjusted to optimize agreement 
with the measured partial distribution functions. The potentials are of the form 

Vij(R) = dj e^^-1-652'94»"^«,^)"12 - 1)0(1.652 194 - auR) (1) 

with the parameters as given in table 1. @(x) is the heaviside function. The PDFs from the 
model are compared to the measured values [5] in figure 1. 

Table 1. Parameters for potentials. Units: a is in units of inverse fee Ni-Ni distance of 2.49 Ä and 
C is in 10~12 ergs. 

Ni-Ni     Ni-Pd     Ni-P      Pd-Pd     Pd-P        P-P 

1.172       1.701      1.211        1.7011      0.567 
0.900       1.080     0.850       0.950       0.755 
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Figure  1.     Comparison of model (full curves) amorphous pair distribution functions to 
measurements by Egami et al [5] (broken curves). 

3. Stability and diffusion 

Like many metallic glasses (NixPdi_x)0.sPo.2 alloys are associated with a deep eutectic. A 
reasonable assumption is that at compositions where the liquid state is stable at unusually 
low temperatures the amorphous phase, which is essentially a frozen liquid, has a free energy 
competitive with alternative crystalline phases. If long diffusion paths are required to reach 
energetically-favoured crystalline structures, or if diffusion barriers are high, the conditions 
for glass formation are enhanced. 

In crystals, the diffusion rate is controlled by the density of vacancies and the hopping 
time. The hopping time depends on the height of the barrier to vacancy hopping. In glasses 
the definition of a vacancy is not clear cut. Sietsma and Thijsse [9] have made progress 
toward a workable definition of a vacancy in glass. They characterize the unoccupied regions 
in the glass system according to their volumes and number of surrounding atoms. They 
observe that annealing eliminates large, local, free-volume elements that have greater than 
nine surrounding atoms. These large volumes, which tend to anneal out, are considered to 
play the role of vacancies, while those that remain are thought to be similar to interstitial sites 
or constitutional vacancies in crystals. The large and small volumes are referred to as holes and 
voids, respectively. The distribution of free volume, because it dominates diffusion is likely 
to play an important role in the kinetic stability of the glass. 

We attempt to extend the understanding of the free volume in two ways. First, because 
our model is based on matching the measured PDFs, there is the hope that it also reproduces 
characteristics of the distribution of free volume found in the experimental sample. Hence, 
we study the distribution of free volume in our model. Although the PDFs do not uniquely 
determine the atomic arrangement, they do constrain it considerably and the distribution of 
free volume in our model may be indicative of its distribution in a real sample. Second, 
we study positron wavefunctions. Because positrons are repelled by the nuclei, injected 
positrons spend most of their time meandering through the interstitial regions and vacancies 
until they annihilate. If defects that trap the positrons are plentiful, the majority of positrons 
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will diffuse through the system for only a short time before being trapped. Once trapped they 
find themselves in a region of low electron density and have an extended lifetime characteristic 
of the type of defect (i.e. in a crystal typical traps would be monovacancies and divacancies). 
We take the initial steps necessary for interpreting the information available in the annihilation 
photons; we calculate the positron density and lifetime. 

4. Atomic structure 

We can further analyse the structure by tabulating distributions of bond angles. We find that the 
distribution of angles (figure 2) in Ni0.4Pd0.4Po.2 is very similar to the distribution in Nio.sPo.2- 
They both peak near 6 = 60° and 108° characteristic of icosahedral packing and differ only 
in small details. Fee packing would have had peaks at 60°, 90°, and 120°. The population of 
bond angle can be subdivided according to whether the vertex atom is phosphorus or transition 
metal and the number of phosphorus atoms among the remaining two atoms that form the 
angle. The angle populations involving only transition metal atoms at the two compositions 
are very similar and are very icosahedral in nature. The angles with a P vertex have very similar 
distributions at the two compositions; the angles are predominately around 70°, consistent with 
a lower coordination around P. The case of a transition metal vertex and a P and transition metal 
atom completing the angle shows the greatest change with composition. This change is because 
Pd and Ni sit at different distances from the phosphorus due to their different sizes. The angles 
formed by a transition metal atom at the vertex and two phosphorus atoms are distributed in a 
broad peak (not shown) centred at 100° with no angles below about 80° because there are no 
P-P nearest neighbours. 

Another way of describing the bonds is to look at the atoms surrounding each bond. In a 
perfectly icosahedral system each bond would have five surrounding atoms that are common 

0.03 

0.02 

0.01 

100       120 
Bond Angle 

180 

Figure 2. The distribution of bond angles: the curves denote results for Nin.sPn.j; the solid curve 
is for all bond angles, the long-dash curve is for the P-vertex bonding to two Ni, the short-dash 
curve is for the Ni-vertex bonding to a P and a Ni, the dotted curve is for all Ni. The symbols apply 
to Nio 4Pd().4Po.2 and arc labelled in the key, T stands for Ni or Pd. For example, P-TT stands for 
a phosphorus-vertex bonding with two transition metal atoms. 
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Figure 3. The integrated distribution of free volumes: Nio.sPo.2 is denoted by a full curve and 
Nio.4Pdo.4Po.2 is denoted by a broken curve. 

nearest neighbours to the two atoms that form the bond. Fee would have four bond neighbours. 
In our models we find that the most commonly occurring number of bond neighbours is five. 
About half the bonds have five bond neighbours, with the remaining bonds having numbers of 
neighbours predominately in the ranging from four to seven. For transition metal bonds about 
four of the surrounding atoms are transition metal atoms and one is P. The bonds with more than 
five neighbours usually have an additional P. Again, there is no clear-cut distinction between 
the two systems. From the point of view of bonds the structure behaves substitutionally, with 
local dilation to account for the larger size of Pd, but on average preserving the bond angles. 
This is consistent with the observation made by Egami et al [5]: that the PDFs are roughly 
concentration independent; and the observation of Alamgir et al [10]: that the core levels are 
roughly concentration independent. It is doubtful that these small differences in bond statistics 
can be held accountable for the much greater glass forming ability of Nio.4Pdo.4Po.2- 

Another way to characterize the atomic structure is to look where the atoms are not. We 
construct Voronoi polyhedra [11] according to the radical plane construction [12] using the 
radii 2.293, 2.66, and 1.963 au for Ni, Pd and P, respectively. We then shift our attention to 
the points farthest from the atoms, the vertices of the Voronoi polyhedra. These are the points 
associated with the free volume [9]. For each vertex we find the largest sphere that does not 
overlap any atomic sphere. We then group those vertex-centred spheres that overlap each other. 
The space defined by the overlapping, vertex-centred spheres defines a cell of free volume. The 
distribution of the volumes of these cells is shown in figure 3. The figure shows the integrated 
free volume (i.e. the sum of all free volume below a limiting void or hole size). There are 
two major differences between the two compositions. The Pd-containing composition has less 
free volume and less of the free volume is associated with large-volume cells. This could be 
a manifestation of the higher packing fraction possible with a distribution of atomic sizes. 

In bulk amorphous alloys, as proposed by Sietsma and Thijsse, diffusion is probably 
controlled by the large free volumes, holes, that are smaller than vacancies but larger than the 
interstitial volumes in ordered materials. Reduction of the number of these holes may be the 
mechanism by which bulk amorphous alloys are prohibited from diffusive transformation to 
the crystalline ground state even when cooled slowly. It would be valuable to have measured 
values for the positron lifetimes at these two compositions. The validity of our model free- 
volume distributions would be supported if the lifetime was longer for Nio.sPo.2, indicating 
that the more plentiful holes trapped the positrons. 
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5. Positron states 

Positrons are trapped by defects, particularly vacancies. When they annihilate they provide 
information about the electron density at the defect as well as the atomic species of surrounding 
atoms. In a simple system, such as well annealed Cu with a few well dispersed monovacancies, 
two lifetimes are observed. One is a short lifetime associated with itinerant positrons in the 
bulk, and the other is a longer lifetime associated with positrons trapped at the vacancies. The 
density of vacancies and the electron density at the vacancy site can be determined. In more 
complex systems there may be one lifetime, or several lifetimes. For example, amorphous 
metals typically have one broadened lifetime, the interpretation of which is not clear. It is still 
debatable whether all annihilation is of the bulk type or from defects. In these more complex 
systems models are needed to extract useful information from the positron experiments. 

The two photons created when a positron annihilates with an electron carry away the 
momentum and energy of the pair. Because the positrons have (shortly after injection) only 
thermal energies, a high-momentum photon pair indicates annihilation with a high-momentum 
core electron, rather than a low-momentum valence electron. The high momentum part of the 
core annihilation profile as a function of momentum is characteristic of the element and can 
be obtained by experiments on the pure element and by calculation [13]. In multicomponent 
systems, the high momentum profile of positrons trapped in vacancies can be compared to 
profiles from the pure elements to indicate the atomic number of the atom whose core electron 
participated in the annihilation [13]. The simplest assumption is that the atoms participating 
in the annihilation are nearest neighbours of the trapping defect. 

At this stage we can calculate the positron wavefunctions and determine which nuclei 
have the greatest overlap with the positron density. We did this by calculating the 
electrostatic potential of our self-consistent electron density. The local approximation to the 
electron-positron correlation potential [14] was added to the electrostatic part to provide a one- 
particle Schrödinger equation for the positrons. We used the LSMS to solve for the positron 
wavefunctions. The site decomposed density of states shows that the low-energy positrons 
are predominately on P sites. The product of the electron and positron densities adjusted for 
correlation and multiplied by the annihilation cross section gives the positron annihilation rate 
[14]. We have not yet incorporated the matrix elements that couple the positron wavefunctions 
to the electronic core levels. Therefore, we cannot predict the characteristic patterns that will 
be seen in high-momentum positron annihilation experiments on Nio.4Pdo.4P02 when they are 
carried out. We have observed that the positrons have their greatest overlap with the phosphorus 
core so we can anticipate that the high-momentum annihilation will indicate annihilation at 
phosphorus cores. 

We can compare our calculated positron lifetime to some interesting preliminary 
measurements by Somieski [15] of the positron lifetime in Nio.4Pdo.4Po.2- Their measurements 
give lifetimes in an as-quenched specimen distributed in the range 140-180 ps [15]. After 
annealing for 24 h at 200 °C a second group of lifetimes appears in the range 100-120 ps. 
Our calculated average lifetime for the lowest eight positron states is 114 ps. One possible 
explanation of these results is that the as-quenched sample has large defects similar to quenched- 
in thermal vacancies in rapidly-cooled crystals. These defects in the amorphous structure may 
have long lifetimes in the 140-180 ps range. These defects could have large trapping cross 
sections that could account for nearly all annihilation events. In the computer-generated model 
these large vacancies are probably precluded by the model construction procedure. When the 
experimental sample is annealed, the number of large vacancies is reduced and eventually 
the smaller-free-volume cells similar to those seen in the model begin to trap positrons with 
sufficient probability to be observed in the experiments in the range 100-120 ps. 
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The electronic density of states is modified considerably by the addition of Pd (figure 4). 
Substitution of Pd for Ni greatly increases the overall d-band width of Nio.4Pdo.4P02 relative 
to Ni0.8Po.2 [4]. This occurs because of the broader d-band width of elemental Pd and because 
the centres of the Ni and Pd d-bands are displaced from each other. The Ni states occupy 
the upper part of the band and the Pd states dominate in the lower part of the band. This 
separation is seen in the behaviour of the x-ray photo-emission spectrum (XPS) as a function 
of Pd concentration [10]. 
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Figure 4. Density of states as function of electron energy for amorphous Nio.4Pdo.4Pc2; the zero 
of the energy scale is the Fermi energy. The dash-dot curve is the XPS calculated using a rough 
approximation to the inclusion of matrix elements (arbitrary units). 

There is a long tail of states below the d-band that are contributed equally from Ni, Pd, 
and P states. From our experience with Ni-P we speculate that these tail states are somewhat 
localized due to the disorder. The fact that all species contribute equally to these tails would 
tend to make them independent of composition. This can be seen in the lack of composition 
dependence of the XPS data between 5 and 8 eV. 

We find low-lying phosphorus states split-off from the d-bands. These states may be 
responsible for the barely perceptible bulge in the XPS data at a binding energy of 12.5 eV. 

Our calculated density of states at the Fermi energy is higher than that seen in the XPS. 
Furthermore, we did not see a minimum in the density of states near the Fermi energy that, 
if present, would have indicated the effects of the stabilizing mechanism suggested by Nagel 
and Taue [16]. Our density of states has a dip at 4.5 eV that is not seen in the XPS. A 
further difference between the density of states and the XPS is that the XPS d-band is almost 
symmetric about the band centre, while the calculation shows a strong Ni peak at the upper 
d-band edge. In order to show how inclusion of matrix elements affect the agreement, we 
plotted the weighted sum of the Ni and Pd densities of states. We weighted the Pd states by a 
factor of four relative to the Ni states. This is based on the statement of Almagir et al [10] that 
the P matrix element is very small and the matrix element for Pd is four times as large as for 
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Ni. This rough approximation to a true calculation [17] of the XPS gives excellent agreement 
with the measured spectrum. 

7. Conclusions 

We have used the PDFs recently measured by Egami etal [5] to develop interatomic potentials 
suitable for Ni-Pd-P amorphous alloys. We do not make any claim for the usefulness of the 
energy comparisons based on these potentials. Combined with the procedure of randomly 
packing hard spheres they should be viewed as part of an interpolation or extrapolation 
procedure that can use the PDFs of Ni0.sPo.2 and Nio.4Pdo.4P02 to construct models at other 
compositions. The geometric properties of the model are discussed along with the resulting 
electron and positron states. The comparisons of the electronic density of states and positron 
lifetimes with measurements are promising. These comparisons are not straight forward and 
there are additional questions to be addressed; still, it is fair to say at this stage that there are 
no contradictions that discredit the validity of our model structure. 
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Abstract. Using high- and low-energy x-ray scattering techniques, we have studied the effect of 
defects on the ß\-ßi phase transition in V2H. Since we earlier observed two length scales in this 
crystal, we focus here exclusively on either the pure bulk or the defective skin layer, which is several 
micrometres thick. While we found a strong and narrow discontinuous transition in the bulk, there 
is a continuous transition in this defective skin layer in which the mosaic spread decreases with 
depth. We suggest that the strain field associated with the change of the mosaic spread most likely 
prompts the conversion of the order of the phase transition. 

We present here a study of the effect of defects on the order-disorder ß\-ß2 phase transition 
in the interstitial alloy V2H, which is believed to be a system analogous to a metamagnet 
[1,2]. Recent theoretical efforts have shown that a temperature-driven discontinuous transition 
of a pure system may be converted to a continuous transition if quenched i.e. static, bond 
randomness is added [3-8]. Very recently, it was shown that random fields convert a first- 
order transition to a second-order transition even more effectively [9,10]. In this paper, we 
report an experimental study of V2H through the ß\-ß2 phase transition either exclusively in 
the pure bulk, which displays a discontinuous phase transition, or in a defective 'skin' layer of 
the same crystal, which exhibits a continuous transition; the skin layer may be understood as 
a defective layer of several micrometres thickness below the surface. 

The ß\-ß2 phase transition is from an ordered monoclinic ß\ phase to a disordered body- 
centred tetragonal (bet) ß2 phase in which the c-axis is along z (for the phase diagram see [11]). 
While in the ßi phase, mostly one sublattice, namely the z-axis octahedral Oz\ sublattice, is 
occupied by hydrogen (H) atoms, both the Ozl and Oz2 sublattices are occupied in the ß2 

phase (for a review see [12-14]). The ßi-ß2 transition is particularly interesting as it appears 
to be analogous to the transition of a metamagnet for which tricritical model calculations can 
be found (for a review see [15]). The ferromagnetic sites of a metamagnet can thereby be 
compared to occupied Oz\ sites and the antiferromagnetic coupling between the layers to the 
alternating occupation of Oz sites [1]. The occupation of mainly Oz\ sites in every other 
(0 k/2 k/2) plane leads to a periodic distortion of the vanadium (V) host lattice and thus to 
{0 k/2 k/2} superstructure peaks (pseudo bet notation) [14,16,17]. In this ordering process, 
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the structure factor can be expressed in terms of the modulated distortion of the V lattice planes 
[18] (h, k, I are the conventional Miller indices). 

Our crystal was loaded by R Hempelmann and subsequently polished and etched (for the 
sample preparation see [2,19,20]). A residual pressure and a hydrogen extraction measurement 
yielded a (bulk) concentration ratio ofCH/CV = 0.525 ± 0.005. 

0.179 

0.000 
5        10       15       20 

Actual Depth [nm] 

Figure 1. Corrected H and O depth profiles at the near-surface of our VH0.525 crystal, measured 
by HERDA. The vertical broken line indicates the position of the free surface. 

A high-resolution elastic recoil detection analysis (HERDA) measurement [20], a 
secondary neutral mass spectroscopy (SNMS) measurement [2], a larger d spacing in the 
defective near-surface layer than in the bulk [2] and the decay of the mosaic spread with 
penetration depth [21] all provide evidence for the presence of a defective near-surface layer 
in our sample. Since the 'penetration depth' is the effective absorption-corrected vertical 
depth in an x-ray experiment, we shall call it the 'effective depth' in what follows. While the 
oxygen (O) content decays drastically with increasing depth in the first 150 Ä, the hydrogen 
(H) content increases to an equilibrium concentration of cH/fv = 0.525 for depths larger than 
150 Ä, revealed from the HERDA and SNMS measurements. The O and H gradients obtained 
from HERDA measurements are shown in figure 1 (for the SNMS measurement see figure 2 
in [2]). We emphasize that the levelling off of the H concentration for depths larger than 
150 Ä corresponds exactly to the bulk concentration, which was independently determined 
as described above. Moreover, a protective oxide cap layer forms naturally and is essential 
in V2H to prevent loss of hydrogen. Using E = 9.0 keV x-ray photons and low momentum 
transfers in our most surface-sensitive experiment, the influence in the scattering contribution 
arising from the upper 150 Ä, which is the region of the H and O gradient, is about 0.2%, 
deduced from the fraction R of the diffracted intensity down to an effective depth d in the 
sample, calculated by R = 1 - exp[-2(ßd/ sin ©)] for a symmetric scattering geometry, 
where ß is the linear absorption coefficient of x-rays, and 0 is the Bragg angle [22]. The only 
'defect' penetrating up to several micrometres is the decaying mosaic spread in our sample, as 
shown in figure 2. We note that there must be a depth-dependent stress field associated with the 
strong change in the mosaic spread with effective depth [23]. This identification of the active 
defects in the skin layer is at variance with our earlier suggestion [2] that defect-decorated 
oxide clusters are responsible for the unusual crossover behaviour of the critical scattering in 
the skin layer at larger reduced temperatures. In a later treatment following this paper [21] 
we note the similarity in the decay of the mosaic spread in figure 2 with the decay of the 
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Figure 2. Mosaic spread of our crystal against effective depth, obtained from five different 
experiments at different reflection angles and different x-ray energies, namely E = 5.9, 9.0, 
10.5, 11.95 and 17.5 keV. 

correlation length and 'actual' Tc. We are thus drawn to consider the dislocation network and 
its associated strain field as the active agent in generating the putative random bonds/random 
fields in the skin layer. 

We performed several x-ray diffraction experiments both with high-energy photons in 
transmission geometry to probe the pure bulk, and with low-energy photons in reflection 
geometry to measure the defective near-surface skin layer. The high-energy transmission x-ray 
experiment was performed at the undulator beamline SRI-CAT, 1 -ID beamline, at the Advanced 
Photon Source (APS) at the Argonne National Laboratory with an optimal x-ray energy of 
E = 44.1 keV from a Si-311 monochromator, together with a Si-Ill analyser crystal and a 
Ge solid-state detector. We verified that there was no contamination from higher harmonics 
throughout the experiment. The reflection experiments were performed with Mo Kal x-rays 
at a RU-200 in-house rotating anode source, and with E = 5.9 and 9.0 keV x-rays at the 
beamline X14A at the National Synchrotron Light Source (NSLS) at the Brookhaven National 
Laboratory. In the reflection experiments, we used a focussing Si-Ill monochromator, and 
for the NSLS experiments additionally a Ge-111 analyser crystal. We note that the effective 
penetration of the x-rays was tuned by choosing appropriate x-ray energies and incident angles, 
which then yielded a depth sensitivity on a micrometre scale. The high-energy experiment in 
the transmission mode and the low-energy experiments in the reflection mode allowed us to 
detect separately the influence arising from the defective skin layer and from the bulk since we 
earlier observed two length scales in this crystal [2], i.e. a broad 'bulk' peak and a diverging 
sharp peak from the defective surface skin. In all experiments, the sample was mounted in a 
strain-free manner under a vacuum of approximately 10"4 Torr. The temperature fluctuations 
of the entire set-up were less than 0.05 K at T > 445 K. Sufficient time, determined by 
quenching the sample and detecting the recovery of the superstructure reflection, was taken to 
reach equilibrium at each temperature. 

The radial intensity distribution around the higher-order fundamental reflection (0 4 4) 
clearly revealed a 0.6 K broad two-phase region in the defective skin layer. A second 
fundamental reflection appears for T = Tc - 0.3 K, which is associated with the high- 
temperature ß2 phase, as shown in figure 2 of [20]. While the second fundamental reflection 
is the only remaining reflection for T > Tc + 0.3 K, the fundamental reflection associated 
with the ßi phase disappeared for T > Tc + 0.3 K, yielding a 0.6 K narrow two-phase region. 
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According to Krivoglaz [24], however, the composition and the concentration cH/cv of the 
sample is still considered close enough to the critical point to observe critical behaviour. We 
note, as above, that Tc was determined using the extrapolated FWHM of a superstructure 
intensity line profile, which is constant below Tc and increases above Tc; the intersection 
yields an extrapolated or 'effective' Tc. 

We now turn to the defective skin layer. Using x-rays in the reflection geometry to tune 
the effective penetration as described above, the long-range order parameter exponent in the 
defective skin layer can be determined from the integrated Bragg intensities, /, of superstructure 
reflections, where / a <t>2 = -B(T/TC - \)

2p and <t> is the Bragg-Williams order parameter 
[25], B is a constant, and ß is the critical exponent (for the data corrections see [20]). From the 

corrected integrated Bragg intensities of the (0 § |) and (0 \ \) superstructure reflections, we 
obtained a value of ß = 0.13 ± 0.02 by including the narrow two-phase region (broken curve) 
as shown in figure 3 (reproduced from [20]). Omitting the data point associated with the two- 
phase region within 0.6 K by treating, in this case Tc as a fit parameter as, for example in [1], 
ß = 0.18 ± 0.02 is obtained (full curve), when both reflections were considered. If we neglect 
the influence of the two-phase region, our experimental value of ß indicates that we observe 
tricritical behaviour in the defective skin layer although it is smaller than the theoretically 
expected value (ß = 0.25). Our value is comparable with an earlier measurement [1] and 
with other tricritical systems. For example, ß = 0.15 in CsCoCl3 • 2D20 by Bongaarts and 
de Jonge [26], yö = 0.18 in ND4C1 by Yelon et al [27] and, more recently, by Seeck et al [28] 
where ß = 0.16 was obtained from lattice parameter data in ND4C1 before applying lattice 
compressibility corrections, while ß = 0.22 was found after the corrections. 
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Figure 3. Corrected integrated intensities of the (0 ' \) and (0j j) superstructure reflections 
in a heating run against AT = T - Tc, measured with Mo Kct x-rays to probe the defective 
near-surface skin layer (for the determination of 7c; sec text). This leads to the critical exponent 
ß = 0.13 ± 0.02 by including the small (0.6 K) two-phase region (broken curve). Neglecting the 
data point associated with the two-phase region and letting 7"c vary as a fit parameter, we obtain 
ß = 0.18 ± 0.02 (full curve). (Reproduced from [20].) 
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On the other hand, the high-energy experiment in the transmission geometry yielded a 
strong discontinuous (first-order) phase transition in the bulk, as shown in figure 4. This can 

be seen by the strong drop of the (01 |) superstructure intensity by a factor of more than 
400 at TQ. The sharp transition width of about 0.3 K, together with the abrupt broadening of 
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the superstructure intensity profiles, as shown in the inset of figure 4, supports strongly the 
presence of a discontinuous transition in the bulk. 
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Figure 4. Peak height of the (0 | |) superstructure reflection against A T = T — 7fc in a heating 
run, measured by high-energy x-ray diffraction in transmission geometry to probe the (pure) bulk. 
A strong discontinuous phase transition in the bulk is displayed with an intensity drop by a factor 

of more than 400. The inset shows the FWHM of the (0 | |) superstructure reflection against 
AT = T — TQ in a heating run, confirming a strong discontinuous phase transition in the bulk. 

The change in the order of the transition from the bulk-discontinuous to the defective skin 
layer-continuous (tricritical) transition is not associated with a change in the concentration 
ratio of CH/CV- Since we measured cu/cy = 0.525 ± 0.005 in the bulk by residual pressure 
and hydrogen extraction measurements, and since the levelling-off in the concentration of H 
shown in figure 1 is the same after the first 150 A, being 99.8% of the scattering contribution 
for our most surface-sensitive measurement (see also above), the conversion of the order of 
the transition is certainly not due to a change in the position of the phase diagram due to a 
concentration change (no evidence for phase separation in the vicinity of the Bragg peaks was 
found outside the narrow 0.6 K region). The change in the order of the transition is also not 
due to the presence of dissolved oxygen in the first 150 A since the fraction R of the diffracted 
intensity arising from the upper 150 A is less than 0.2% as stated above. Furthermore, the strong 
first-order transition in the bulk with a transition width of less than 0.3 K is not accompanied 
by a crossing of a two-phase coexistence region since two Bragg peaks associated with either 
the low- or the high-temperature phase were not observed in the bulk. We therefore propose, 
as discussed earlier, that the observed change in the order of the phase transition, as the bulk 
grades into the skin layer, may be due to the presence of random bonds [3-8], or random fields 
[9,10], and is most likely prompted by the increase in the mosaic spread (dislocation walls) 
with decreasing effective depth, since the change of the mosaic spread is the only 'defect' 
penetrating up to several micrometres. We also note that the fitted 7c for the long-range order 
parameter measured in reflection was 443.5 K [20]; the 7c of the bulk is substantially lower, 
or the bulk-order would overwhelm the surface order in a reflection experiment that probes 
both i.e. with Mo Ka radiation, or at 11.96 keV at the NSLS. 

In summary, we have observed a change in the order of the phase transition in a V2H 
crystal, namely a discontinuous transition in the pure bulk and a continuous transition in the 
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presence of defects in a near-surface skin layer. Since we earlier observed two length scales in 
this crystal [2], we have focused here on the separate influence of the pure bulk and the defective 
skin layer. We may exclude the possibility that the change in the order of the phase transition 
is due to a change of the position of the phase diagram between the defective skin layer and 
the pure bulk, due to an oxygen gradient in the upper 150 A, or due to phase separation and a 
crossing of a two-phase region within this sharp transition width of less than 0.3 K. We thus 
propose that the change in the order of the transition is due to the presence of random bonds or 
random fields, most likely prompted by the change in the mosaic spread within the defective 
skin layer. This suggestion may be modelled theoretically once we have a realistic picture of 
the dislocation substructure [23]. The simulation will incorporate the presumed strain fields 
in order to probe their effect on the critical behaviour. It is our belief that a continuous change 
in defect density can produce a discontinuous change in the nature of the phase transition as 
postulated in the literature [3-10]. In addition, a strong uniaxial strain field, associated with 
the depth-dependent mosaic spread in the skin layer [23], may, by itself, promote the observed 
conversion in the order of the phase transition [29]. 
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Abstract. The Ni-rich portion of the Ni-Al phase diagram is examined in light of data on 
coherent equilibrium between the y (Ni-Al solid solution) and y' (M3AI) phases, as well as on 
the thermodynamic requirements of coherent equilibrium. The model of Ardell and Maheshwari 
was used to calculate the difference between the incoherent and coherent solubility limits over 
the temperature range of 400-800 °C. New data on the elastic constants of Ni3Al as a function 
of temperature and composition, as well as the Gibbs free energy functions of the most recent 
thermodynamic model of the Ni-Al alloy system, were used in the calculations. With these input 
parameters the predicted differences between the incoherent and coherent solubility limits are very 
small, and inconsistent with recent experimental data on the variation of the coherent solubility 
with the y' volume fraction. The inconsistency is a consequence of the large curvature of the Gibbs 
free energy function for the y phase obtained from the thermodynamic model. These findings are 
discussed in the context of the accuracy of thermodynamic modelling of phase diagrams. 

1. Introduction 

The Ni-rich portion of the Ni-Al phase diagram, which describes equilibrium between the 
Ni-Al solid solution (y) and Ni3 Al (y') phases, is quite important for technical reasons, serving 
as the basis for many Ni base superalloys. It is well established, theoretically, that coherent 
phases in thermodynamic equilibrium have solubility limits that differ from the solubility limits 
in incoherent, unstressed, equilibrium [1-3]. It was first realized by Williams [4,5] that the 
coherent solubility limits can depend on the initial alloy composition, X0. A consequence of 
this highly unusual aspect of coherent equilibrium is that the lever rule cannot necessarily be 
used for the precise calculation of the volume fraction, /, of a dispersed coherent phase. This 
is because the phase boundaries in nearly all conventional phase diagrams represent incoherent 
equilibrium solubility limits, but the solubility limits for these same phases differ when they 
are in coherent contact. 

Coherency strains arise when the lattice constants of the phases in coherent equilibrium 
are unequal. For the y and y' phases in Ni-Al alloys, the relative mismatch in the lattice 
parameters, e, is 0.0047 at room temperature; e decreases slightly as the temperature increases 
[6]. Even though e is not very large compared with the values in some other binary Ni base 
alloys [6], it is still of sufficient magnitude to produce an appreciable difference between 
the incoherent and coherent solubilities, Xra and XQ*, respectively, of the y' phase at low 
temperatures. Ardell and Maheshwari [7] concluded from an examination of data of Gentry 
and Fine [8] that XCa in a Ni-Al alloy containing 13.8 at% Al was greater than in an alloy 
containing 11.1 at% Al at two ageing temperatures, 425 and 450 °C. The difference between 
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the values of XCa in the two alloys is quite large, about 1.34 at% at 425 °C and 1.52 at% at 
450 °C. Li and Ardell [9] recently conducted ageing experiments at 500 °C on Ni-Al alloys 
with three different compositions and showed that the difference between the values of XCa 

for alloys containing 11.4 and 15.9 at% Al is approximately 0.7 at%. 
Ardell and Maheshwari [7] developed a model for coherent equilibrium in alloys 

containing spherical precipitates (the AM model). The AM model predicts the dependence 
of Xca on a variety of thermodynamic and physical parameters, and is consistent with 
experimental results which show that XCff increases as X0 (or equivalently /) increases. 
These predictions were recently tested quantitatively by Li and Ardell [10], who used the best 
estimates of all the physical parameters for the y and y' phases, and employed an important 
thermodynamic parameter derived from a model for y-y' equilibrium published by Calderon 
etal [11]. 

Subsequent to the publication of Li and Ardell [10], new values of the elastic constants 
of the y and y' phases have been measured as functions of temperature and composition 
[12,13]. Also, a more recent and presumably more accurate model of the thermodynamics 
of this alloy system has been published [14]. One of the objectives of this work is to re- 
examine the predictions of the AM model in light of the most recent values of these important 
parameters. This re-examination also serves the purpose of providing a, perhaps, more stringent 
evaluation of the available thermodynamic models of the Gibbs free energy functions than can 
be obtained just by comparing the predicted and experimentally determined phase diagram. 
The reason for this is that coherent equilibrium involves the second derivatives of the Gibbs 
free energy, whereas fitting the phase boundaries involves only the first derivatives via the 
common tangent rule in the absence of data on the activities of the components in solid 
solution. The accuracy of the thermodynamic modelling is, therefore, also addressed in this 
work. 

There are two other issues considered in this paper. The Ni-rich portion of the Ni-Al 
phase diagram has been investigated on numerous occasions, and there is considerable scatter 
in the data. One issue is whether the scatter can be explained by the fact that some investigators 
might have measured incoherent equilibrium while others measured coherent equilibrium. The 
other issue involves the fact that Li and Ardell [9] measured coherent solubility limits at the 
relatively low temperature of 500 °C. Since the quantitative impact of coherent equilibrium 
is expected to decrease with increasing temperature [7], it is important to determine whether 
there are any real, practical consequences associated with the concept of coherent solubility in 
Ni-Al alloys at higher temperatures (600-800 °C), where the ageing kinetics are much faster. 

2. N1-N13AI phase diagram 

The Ni-Ni3Al phase diagram is shown in figure 1. It includes nearly all the extant data on 
equilibrium between the y and y' phases over the temperature range of 400-1300 °C (the 
oldest data of Alexander and Vaughan [15], Schramm [16] and Taylor and Floyd [17], which 
are in reasonably good agreement with the data shown, are excluded for the sake of clarity). 
The entire Ni-Al phase diagram has recently been evaluated thermodynamically by Ansara 
et al [14], but the most recent data on the phase boundaries relevant to y-y' equilibrium 
were provided by Dupin [18]. These are presented in figure 1, as is the y' solvus calculated by 
Calderon etal [11]. The y' solvus of Calderon etal [11] is displaced to lower Al concentrations 
with respect ot that of Ansara et al, but both are in equally good agreement with the data at 
temperatures below 1200 °C. 

It is quite reasonable to conclude that nearly all of the previous investigations of the 
y/y' equilibrium in Ni-Al alloys have measured coherent solubility limits because incoherent 
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Figure 1. The Ni-rich region of the Ni-Al phase diagram. The data shown are from: 0, Gentry 
and Fine [8]; O, Li and Ardell [9]; ►, Williams [19]; T, Hornbogen and Kreye [20]; D, Rastogi 
and Ardell [21]; ♦, Janssen [22]; A, Chellman and Ardell [23]; +, Verhoeven et al [24]; •, Jia 
via Okamoto [25]; and x, Watanabe et al [26]. The full curves are the phase boundaries from the 
model of Ansara et al [14], updated by Dupin [18], and the broken curve is the solvus calculated 
byCalderonefa/[ll]. 

equilibrium between the y and y' phases is rarely observed as a consequence of normal 
heat-treatment, for example solution treatment and ageing or very slow cooling from high 
temperatures. An example of the persistence of coherent equilibrium between the y and y' 
phases is shown in figure 2, which is an electron micrograph of plate-shaped /' particles in a 
well aged Ni-Al alloy. The particles in figure 2 are nearly 1 fim in length, but are nevertheless 
fully coherent, as evidenced by the absence of dislocations at the interfaces and the very strong 
<5-fringe contrast that arises because the matrix becomes tetragonally distorted near the y-y' 
interface [27]. Another example of the persistence of coherent equilibrium is demonstrated in 
the experiments of Watanabe et al [26], who determined the solubility limits from chemical 
analysis of diffusion couples. They found that the y and y' phases even became coherent 
during diffusion anneals at high temperatures, and remained so throughout the course of the 
experiments. 

The coherent solubility limits measured by Li and Ardell [9] vary from 0.098 to 0.105 
at 500 °C. This range of solubilities is undoubtedly due to the influence of coherency strains, 
but it is, nevertheless, small compared to the uncertainties in the solubility limits evident in 
figure 1. Since the incoherent solvus is unknown, it is useful to determine whether it lies within 
the range of the scatter in the y' solvus seen in figure 1. At present, this can only be determined 
by calculation. Such calculations have already been carried out by Li and Ardell [10], and 
these calculations are repeated here using the most recent data on the elastic constants of the 
y and y' phases, and the Gibbs free energies of mixing of the model of Ansara et al [14] and 
Dupin [18]. 
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Figure 2.  High-voltage transmission electron micrograph (~500 keV) showing large coherent 
precipitates of Ni3 Al in a NU 3.53 at% Al alloy aged for 450 h at 700 °C. 

3. Theoretical background 

3.1. Equations of the AM model 

According to the AM model the incremental increases in the coherent solubilities of the a and 
ß phases, AXa and AXß, respectively, as a function of the volume fraction, /, are given by 
the equations 

AX„      A{-8(r1f)
2 + 2r]f+\] 

AX, 2(1-5»;/) 

and 

where 

and 

Xa 
AXß = ^AXa 

Xfl 

AXa = XQO — Xia 

AXß = Xcß — X\ß 

AX, = X,, X la- 

(1) 

(2) 

(3) 

(4) 

(5) 

In equations (3)-(5) the subscripts C and I refer to the coherent and incoherent states, 
respectively, and the subscripts a and ß to the majority and minority (dispersed) phases, 
respectively.  X,ff is the equilibrium incoherent solubility of B in a, X\p is the equilibrium 
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incoherent solubility of B in ß, and the parameters r\, S and A are defined by the equations: 

"=4^ (6) 

and 

9s2Kl 

Xa^ßAX2 

In equations (6)-(8) the parameter e is the stress-free lattice misfit, defined as 

A =   ..   r,    /V2- (8) 

(9) 

where aa and aß are the lattice constants of the stress-free a and ß phases, Ka and Kß are the 
bulk moduli of the a and ß phases, ßa is the shear modulus of the a phase, Fß is defined as 

and the parameters Xa and Xß are given by the equations 

n 

x=xb ~ *A 

n0 d2Ga 
Xa 

NA 3X2 

and 

n 

«7°-« <"> 

_ n0 d2Gß 
Xß ~ NA 3X2 

X=X] v 
= jj-Gl, (12) 

where n0 is the number of atomic sites per unit volume (essentially the reciprocal of the atomic 
volume) which is assumed to be equal in the a and ß phases, NA is Avogadro's number and Ga 

and Gß are the Gibbs free energies of mixing in the a and ß phases, respectively. Owing to the 
inverse relationship between A and x in equation (8), and the proportionality between AX„ 
and A, the curvature of the Gibbs free energy plays an extremely important role in determining 
the magnitude of AXa via equation (1). In equations (1)—(12) a is the majority phase and ß 
the dispersed phase; it is perhaps worth stating that a corresponds to y and ß to y'. 

3.2. Parameters 

The recent results of Kamara et al [6] provide reliable values of e from room temperature to 
700 °C. The empirical equation describing the temperature dependence of e with temperature, 
T (in kelvin) is 

e = 4.2426 x 10~3 + (2.6664 x 10"6)r - (2.8752 x 10"9)r2. (13) 

The single-crystal elastic constants, c,;-, for both phases have recently been measured [12,13], 
and are described as functions of T (in kelvin) and concentration of Al, XAi, by the empirical 
equation 

Cij = *i + k2T + k3XAl + k4XMT + k5T
2 + k6X

2
M (14) 

where the kt are empirical constants that differ for the two phases. Since the AM theory is 
based on the use of isotropic elasticity, the Q,- must be converted to Ka, Kß and ßa for use 
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in the calculations. The bulk moduli pose no difficulty, and can be calculated from the c,; for 
both phases using the formula 

cn+2ci2 (15) 

3 
Estimating ßa is more problematic, since the choices are numerous. We have chosen to 

calculate an isotropic value of /x„ using the mean of the upper (ßa) and lower (//,) bounds 
of the Hashin-Shtrikman (HS) [28] values.  The upper and lower bounds are given by the 
equations: 

and 

where 

Mi = AM.o + 3 4/3, ) (16) 
vAUoo - AMio 

MU = MIOO + 2( 6ß2 ) (17) 
v Mi io — AMoo 

and 

Mno= 2  

/ZlOO = C6A (19) 

=     -3(Jg + 2/x„0) (20) 

5MIIO(3^ + 4/U,HO) 

_    —3(/JT + 2/iioo) ,2i) 

5/u.ioo(3/sT + 4^10o)' 
The values of \xa vary from about 55 to 66 GPa over the temperature range of 400-800 °C, 
which are smaller than handbook values of the shear modulus of pure Ni by 20-30 GPa. The 
reduction of the shear modulus of Ni on alloying with Al and increasing the temperature is 
consistent with expected behaviour [12]. 

Evaluation of the parameters Xa and Xß requires thermodynamic models of the y and y' 
phases. The model of Calderon et at [11] was used in the previous calculation by Li and Ardell 
[10]. In this work G"a was obtained from model of Ansara et al [14] and Dupin [18]. 

Xfa was calculated by evaluating the left- and right-hand sides of (1) and (2) independently, 
making use of the mass balance equation 

_  X0 - XCg ^ (22) 
Xqs ~ Xca 

Since XIl8 is also unknown, additional assumptions are needed for a complete analysis. To 
simplify the process the experimentally measured values of X^ were taken to represent XC/j, and 
the differences between Xc^j and X^ were assumed to be relatively small at all temperatures. 
To expedite the calculations the empirical equation 

XC£ = 0.171 9088 + (3.251 375 x 10~4)r - (4.569 817 x 10"7)r2 

+(2.3407391 x 10-,0)r3 - (3.724450 x 10",4)r4 (23) 

where T is in kelvin, was fitted to the data on the (y + y')/y' phase boundary provided by 
Dupin [18]. 

Taking into account the dependence of the parameters in equations (6)-( 12) on composition 
and temperature, equations (1) and (2) were solved iteratively, utilizing (22). The assumption 
that Xqs is known fixes the value of Xß and simplifies the calculations considerably. 
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The iterative procedure began by assuming a trial value of Xia, which was then used to 
calculate all the parameters depending on XIa that appear in (1). Both sides of (1) were 
calculated iteratively using new trial values of Xfa until the difference between the left- and 
right-hand sides of (1) resulted in a difference of XIa amounting to less than 0.00001. 

4. Results and discussion 

The incoherent solubilities calculated using the thermodynamic model of Ansara et al [14] and 
Dupin [18], as well as the experimental data on which they are based, are shown in figure 3(a). 
It is evident that the differences between the coherent and incoherent solubility limits are very 
small and would probably be undetectable experimentally. This is a far different result from 
that reported by Li and Ardell [10], and stems mainly from the large values of the curvature 
of the Gibbs free energy function used in the present calculations compared to those used 
previously. In the model of Calderon et al [11] the curvature is given by the equation 

RT 
' '     65(1 - 2Xto) (24) G" = 'ia ■2A- 

Xl«(l — XIQ.) 

where A = 3.2951AT - 104 361 J mol"1 and 5=41291.4 J mol"1. A comparison of the 
magnitudes of G'{aA and G'{aC from the models of Ansara et al and Calderon et al, respectively, 
is presented in figure 4; the values of XIa provided by Dupin [ 18] were used in this comparison. 
It is evident that G'{aA is significantly larger than G'{a c, especially at lower temperatures. The 
values of Xfa calculated using (24) are shown in figure 3(b); the differences between Xto 

and XCa are much larger than those in figure 3(a) and do not differ significantly from those 
calculated by Li and Ardell [10]. 
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Figure 3. The incoherent solubilities of M3AI predicted by the AM model using: (a) the 
thermodynamic model of Ansara et al [14] and (b) the model of Calderon et al [11]. The open 
symbols represent the coherent solubilities measured experimentally from data on the depletion 
of solute kinetics during coarsening, the corresponding full symbols represent the calculated 
incoherent solubilities. Data of: 0, Gentry and Fine [8]; O, Li and Ardell [9]; D, Rastogi and 
Ardell [21]; A, Chellman and Ardell [23]. The full curve in each figure is the solvus from the 
model of Ansara et al [14] and Dupin [18], and the broken curve is the solvus of Calderon et al 
[11]. 
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Figure 4. The ratio of the curvatures of the Gibbs free energy of mixing. G"a, against temperature, 
T, calculated using the models of Ansara et al [14] and Dupin [18] (subscript A) and Calderon 
et al [11] (subscript C). 

There can, of course, be only one value of XIff at any temperature. The values of Xi„ 
calculated from the experimentally measured values of XCa should therefore coincide. They 
do not even come close to doing so using the model of Ansara et al, which implies either that 
there is something wrong with the data analysed, that the AM model is quantitatively incorrect, 
or that there is something wrong with the parameters used in the AM model. Regarding the first 
possibility, we know from the experiments of Li and Ardell [9] that the increase in XCa with 
increasing X0 in Ni-Al alloys was also observed in the coarsening experiments on Ni-Ga and 
Ni-Ti alloys. There is little doubt that the data are meaningful and that the expected changes 
in Xco are measurable. 

Regarding the AM model, it is important to recognize that coherent equilibrium always 
involves the curvatures of the Gibbs free energy functions of the phases involved. This 
is independent of the geometry of the phases. Examples are Cahn's theory of spinodal 
decomposition [1], the general model of Cahn and Lärche [29], the models considered by 
Johnson and Chiang [30] and Johnson and Müller [31], which involve equilibrium between 
phases in the form of parallel plates, and the models of Johnson and Voorhees [32] and Pfeiffer 
and Voorhees [33], which are similar to the AM model but involve different boundary conditions 
for the elastic strains. In all these models a quantity similar to A in equation (8), i.e. one that 
includes the ratio of the square of a misfit parameter multiplied by an elastic constant divided 
by G"a (or a closely related quantity), emerges naturally. It thus appears that a parameter 
similar to A is a ubiquitous feature of any theory of coherent equilibrium and is independent 
of the precise details of the model. 

Regarding the parameters involved in the AM model, the most poorly constrained one is 
G"a. It is obvious that the Ni-rich portion of the Ni-Al phase diagram is described very well 
by the thermodynamic model of Ansara etal[]4] and Dupin [18]. Moreover, their free energy 
functions are clearly consistent with the rather limited data on the chemical potentials of Al 
and Ni in the Ni-rich solid solution at temperatures greater than 1273 K (see figure 7 of their 
paper). The first derivatives of their free energy functions are therefore reasonably accurate 
at these higher temperatures, but additional data on the chemical potentials are required to 
ensure that the curvatures of the high-temperature free energy functions are also reasonably 
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accurate, and such data are currently unavailable. Also, there are no data on the activities of Al 
and Ni at lower temperatures, for example 750-1000 K, which is the regime of temperatures 
in which the coherent solubility limits have been measured. In this range of temperatures 
the free energy functions can only be estimated by fitting the phase diagram, i.e. by invoking 
the common tangent criterion for equilibrium. The values of G'{a from the model of Ansara 
et al are therefore far less reliable at lower temperatures than at higher temperatures, which is 
unfortunate because the impact of coherent equilibrium is much greater at low temperatures. 

The y' solvus from the model of Calderon et al [11] also agrees quite well with the experi- 
mental data in figure 1, so there is little to choose between the two models insofar as fitting this 
part of the phase diagram is concerned. However, the prediction of the y' solvus must be fortu- 
itous to some extent because their thermodynamic functions make use of the data of Kaufman 
and Nesor [34], who treat the y' phase as a line compound. The model of Calderon et al thus 
involves equilibrium between the y solid solution and a y' phase of fixed composition, and it is 
well known that the composition of the y' phase deviates considerably from stoichiometry (see 
figure 1, for example). This is completely different from the model of Ansara et al [14], who 
regard the y' phase as a continuous solid solution varying in composition from 0 to 100% Al. 

It is fair to state that the y' solvus has been calculated with comparable accuracy by two 
different thermodynamic models that utilize very different functions for the Gibbs free energy 
of mixing. Both models succeed equally well, partly because the phase boundaries themselves 
play an important role in fitting the free energy functions. The curvatures of these functions are 
not critical in fulfilling the common tangent construction for equilibrium, and in the absence 
of data on the activities of the components their curvatures are not easy to estimate, especially 
at lower temperatures. Moreover, the curvatures are essential in assessing the magnitude of 
the effect of elastic strains on coherent equilibrium. The function for G'[a of Calderon et al, 
equation (24), in conjunction with the AM model, predicts a dependence of Xo on X0 that 
is easily measured experimentally. The corresponding dependence predicted by the model of 
Ansara et al is significantly smaller and would be rather difficult to detect. As is apparent in 
figure 3, the data of Li and Ardell [9] are consistent to a far greater extent with the predictions 
of the AM model provided that G'{a is calculated using the model of Calderon et al. 

Regarding the other two issues alluded to in the introduction, it is quite apparent that the 
practical consequences of coherent equilibrium are small in the Ni-Al system. For example, if 
it were necessary to know the equilibrium volume fraction of the y' phase at low temperatures, 
say 600 °C or lower, with high precision, then the influence of the coherent equilibrium might 
come into play. However, the differences between XCa and XIo are expected to become smaller 
and smaller as T increases, and the consequences of coherent equilibrium at T > 600 °C can 
be safely ignored. It also appears as if the scatter in the data, plainly visible in figure 1, cannot 
be accounted for by invoking coherent equilibrium, since the scatter generally exceeds the 
differences in the experimentally measured values of Xca [9]. 

5. Summary 

The incoherent solvus describing the equilibrium between the y and y' phases in Ni-Al alloys 
has been calculated using the AM model of coherent equilibrium. The calculations reported in 
this work utilize the most up-to-date values of the thermodynamic and physicalparameters for 
Ni-Al alloys. These include experimentally measured lattice constants and elastic constants 
as functions of composition and temperature, and the most recent thermodynamic model of the 
Ni-Al phase diagram. The calculations suggest that the differences between the incoherent 
and coherent solubility limits as a function of temperature are very small, and of essentially 
no consequence. This conclusion is belied, however, by experimental measurements which 
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indicate that XCff increases as X0 increases, as predicted theoretically, with increases that are 
relatively easy to detect. The crux of this apparent dilemma is tied to the behaviour of G"a. 
The large values of predicted by the thermodynamic model of Ansara et al [ 14] are responsible 
for the very small differences between XCa and XI(y calculated using the AM theory and cannot 
account for the much larger differences measured experimentally. 
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Abstract. Chemical ordering and clustering instabilities in alloys are governed by the Fourier 
transform of the effective pair interactions, V(k). We make use of a second-order-expansion 
formalism, based upon embedded-atom-method interatomic potentials, to calculate chemical and 
elastic contributions to V(k) for monolayer surface alloys on single-crystal substrates. It is 
demonstrated that the elastic contribution to V(k) is characterized by a finite slope at the origin, 
consistent with continuum models which predict that V(k) oc — |fe| for small wavevectors. As a 
consequence, the global minimum in V(fc) always occurs at finite fc, and therefore compositional 
instabilities in ultrathin surface-alloy films are generally of an ordering (as opposed to clustering, 
k = 0) type. 

1. Introduction 

In the article 'Configurational thermodynamics of solid solutions' [1], de Fontaine reviews how 
the stability of a disordered alloy solid solution with respect to chemical ordering or clustering 
can be analysed in terms of the Fourier transform of the Hessian of the free energy: 

d2F 
4>{R-R!) = 

Jo _d{Sc(R))d(Sc(R'))_ 

where (Sc(R)) is the ensemble-averaged concentration deviation at site R, and the subscript 
0 indicates that the Hessian is evaluated in the homogeneous solid solution phase (where 
(Sc(R)) = 0VÄ). At high temperatures, where the solid solution is thermodynamically stable, 
<p{R — R') is positive definite, i.e., all of its eigenvalues are positive. As the temperature is 
lowered, a critical point is reached below which one or more of the eigenvalues of the Hessian 
becomes negative, indicating an instability with respect to composition modulation. Within 
mean-field theory, the critical wavevector k* characterizing this instability is determined by 
the global minimum of the Fourier transform of the effective-pair interactions (EPIs) [2], 
V(k). In bulk solid solutions it has long been recognized (see, e.g., the 1969 work of Cook 
and de Fontaine [3]) that k* is determined by a balance between 'chemical' and 'elastic' 
contributions to V(fe), which describe the energetics of atomic swaps on a rigid lattice, and 
the relaxation energy associated with static atomic displacements, respectively. 

Recently, the semi-empirical, embedded-atom-method approach was used to calculate 
V(fc) for bulk late-transition-metal alloys within the formalism of a second-order expansion 
of the alloy energy [4]. Below we generalize this treatment to study the ordering energetics of 
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monolayer alloy films on elemental single-crystal substrates. The present study is motivated by 
the commonly observed phenomenon of surface alloying in metal heteroepitaxial growth [5-7]. 
When one type of metal is deposited onto another, thin alloy layers typically form which are 
localized near the film-substrate interface. This trend has proven to be remarkably general, with 
surface alloying observed even in cases where the atomic constituents do not mix appreciably 
in the bulk [8,9]. From an analysis of the chemical and elastic contributions to V(k) we will 
demonstrate below that ordering (as opposed to clustering) is generally energetically favoured 
in ultrathin surface alloys. 

2. Method 

In order to study the energetics of atomic ordering in surface alloys we will make use of slab 
geometries (see figure 1), embedded-atom-method (EAM) [10,11] interatomic potentials, and 
a second-order-expansion (SOE) formalism [4]. The slab geometries used in this work arc 
illustrated in cross section in figure 1(a). They consist of a total of 27" + 1 layers, with a 
monolayer of surface alloy (red and blue circles in figure 1 (a)) on the top and bottom, capping 
2T — 1 layers of substrate (green circles in figure 1(a)) atoms. The regions above and below 
the slabs are vacuum. 

The positions of the atoms in the slab are given asfl+ u(R), in terms of 'ideal' lattice 
postions R, defined below, and displacements u(R). The atomic configurations in the surface- 
alloy layers are specified by site-composition variables c(R) equal to one or zero, depending 
upon which atom type is associated with site R. In the SOE approach the energy is expanded 
to second order in the displacement and composition variables. The expansion is carried out 
with respect to a reference state, illustrated in figure 1(b), in which the individual (red and blue) 
surface-alloy atoms are replaced by 'virtual' (grey) atoms. Associated with these virtual atoms 
are interatomic potentials which are concentration-weighted averages of those corresponding 
to the two different atom types in the alloy, as described in detail in [4]. The ideal lattice sites 
R are defined as the equilibrium atomic positions in the reference slab. 

Formally, the second-order expansion of the energy can be written as follows: 

E(u(R), c(R)) = E0+-J2 J2[dll'(r' ~ r',.)8c,(n)8ci.(r'r) 
1,1'   ri,rr, 

+2\lfaJj>(ri - r\^hc{{xi)uaj\r'v') + <pa.ß,i,r(ri - r'l,)uaj(r,)uPj'(r'v)'\ (1) 

where EQ represents the energy of the 'virtual-atom' reference state, summation over repeated 
Cartesian indices a and ß is implied, and the ideal lattice positions (R) have been labelled by 
a layer index (/) and a position vector (77) within the layer. In equation (1) <5Q (r/) = c/ (77) - c 
is the deviation of the composition variable at a given site from the average concentration c 
within the surface-alloy layer. Sc/ (77) is defined as zero for substrate atoms (we do not consider 
atom exchanges between the surface alloy and substrate layers). The second expression on the 
right-hand side of equation (1) represents the leading-order term in the Taylor-series expansion 
of the energy of the slab (figure 1(a)) with respect to that of the reference state (figure 1(b)). 

0iHri-r',,) = 
dzE 

35c/(r/)95c/'(r,',) 

is the second derivative of the energy with respect to the local composition variables, and the 
subscript 0 indicates that derivatives are evaluated in the reference state. If either / or /' are 
substrate layers 6 is defined to be zero, and provided T is large (thick slabs) 9 also vanishes 
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(b) 

Figure 1. Schematic diagram illustrating the cross section geometry of the slabs used in the EAM- 
SOE calculations. Red and blue circles represent the surface-alloy atoms, while green circles are 
the substrate atoms. Grey atoms represent 'virtual' surface-alloy atoms, as discussed in the text. 

unless / and /' are equal to the same surface-alloy layer. 

if a I I'iXi — TV) =      — 
ld8ci(ri)duaj'(rl,)j0 

and irajj'(ri — r'v)&ci(ri) is the «-component of the force on an atom in layer /', at r'v 

which arises from a deviation of the concentration from its average value at site r; in the 
surface-alloy layer / (i/a,i,v(ri — r'v) is again defined to be zero unless / is a surface-alloy 
layer). (j>a,ß,ij'(ri — r[,) is the force-constant matrix of the reference-state slab illustrated in 
figure 1(b). 

From equation (1), the equilibrium energy corresponding to a given surface-alloy 
configuration can be determined by minimizing with respect to the atomic displacements. 
Specifically, by imposing the condition of mechanical equilibrium [3£/3«;(r/) = 0 W, r{\, 
the energy can be rewritten as follows: 

^   ^ Oi,i(ri - rf) E - EQ + J2 j25c>ir')Sci(-r^ 
=—T,T T\,T\ 

(2) 
I'J" ri,r'f 

where the first sum on the right-hand side is over the two surface-alloy layers, and 0"1 

is the inverse of the force-constant matrix. By making use of a two-dimensional Fourier 
transformation, equation (2) can be simplified further: 

E = E0+^   J2   Vu(k)\SCl(k)\2 (3) 
1=-T,T 

where n is the number of unit cells per layer, and VTj(k) = V_ri_T(fc) is defined as follows: 

Vr.rW = 0T,T(k) ~ J2 Vfc,T,z(fc)^ju,/-(fc)^,:r,/,(fc). (4) 
/,/' 

From equations (1) and (2) it can be seen that the first and second terms on the right-hand side 
of equation (4) are the 'chemical' and elastic (relaxation) contributions to the Fourier transform 
oftheEPIs. 
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Below we present results for the energetics of bulk and surface Cu-Ag alloys, computed 
using the formalism described above. In the application of this formalism, we have used the 
EAM potentials of Foiles et al [11]. The details concerning the calculation of the terms Eo,0, 
\/r and cp within the EAM are given in [4]. The results presented below for surface alloys were 
obtained with 101-layer slabs (T = 50 in figure 1). 

3. Results and discussion 

In figure 2 we show calculated values of V(k) for surface (figure 2(a)) and bulk (figure 2(b)) 
equiatomic Cu-Ag alloys. Results are plotted for values of |fc| varying between zero and the 
Brillouin-zone boundary along the high-symmetry direction of a primitive reciprocal-lattice 
vector (Gi); for both surface and bulk Cu-Ag alloys these directions contain the global mini- 
mum in V (k). The surface-alloy results were obtained for Cu-Ag on a Pd( 111) substrate. This 
choice of substrate was motivated by the experimental studies of Cu-Ag/Ru(0001) performed 
by Stevens and Hwang [9]; similar to the (0001) surface of Ru, Pd(l 11) is close-packed and is 
characterized by a nearest-neighbour spacing intermediate between that of pure Cu and Ag. 

The results for bulk Cu-Ag in (figure 2(b)) are qualitatively similar to those previously 
discussed for other size-mismatched bulk systems (e.g. [4]). The chemical contribution to 
V (k) (red line) is analytic everywhere, and the limiting value of the relaxation contribution 
to V(k) attains a minimum as |fc| -> 0 along a given direction. From a comparison between 
the red lines in figures 2(a) and (b) it is clear that the EAM predicts only small differences 
between the chemical interactions for Cu-Ag in the bulk and on a Pd(l 11) surface. A similar 
comparison of the results plotted with blue lines shows that the nature of the k = 0 singularity 
in the elastic contribution to V(k) is qualitatively different for surface alloys as compared to 
their bulk counterparts. In particular, the elastic contribution to V(k) for the surface alloy is 
characterized by a finite slope at the origin. Since V(k) = V(-k) for finite |fc|, this implies 
a slope discontinuity for V (k) at the origin. 

The main features characterizing the elastic contribution to V(k) in figure 2(a) can be 
understood by considering the energetics of laterally 'striped' surface-alloy structures ApBp, 
consisting of p layers of atom type A followed by p layers of B along a particular direction on 
the substrate C. Associated with such a striped phase is a fundamental Fourier component of the 
composition modulation with wavevector |fc| = 2n/2dp, where d is the interlayer separation. 
By making use of the continuum elasticity model of Marchenko [12], the formation energy 
AE(p) of an ApBp striped structure on an isotropic substrate C can be written for large p 
(small |fe|) as follows [13,14]: 

, 1 - v2 

pAE(p) = /c - (CTA/C - VB/C)  \og(2pd/7Tb) (5) 
JT (I 

where IQ is a chemical interfacial energy (which may be either positive or negative), and the 
second term on the right-hand side is the elastic relaxation energy associated with the array of 
interfaces between regions of pure A and B. In the expression for the elastic relaxation energy, 
(o/i/c - OB/C) is the difference between the surface stresses associated with films of pure A 
and B on C, v and ß are the Young's modulus and Poisson ratio associated with the isotropic 
substrate, respectively, and b is the cutoff distance smaller than which elastic continuum theory 
no longer applies (analogous to a core radius in dislocation theory). The second term on the 
right-hand side of equation (5) corresponds to an elastic contribution to V (k) which decreases 
linearly with |fc| near the origin [13,14], consistent with the results plotted in figure 2(a). 

Equation (5) holds only for striped phases with large p. As p decreases (increasing 
|fe|), overlapping strain fields lead to a short-ranged elastic repulsion between A/B and B/A 
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Figure 2. EAM-SOE-calculated values of the reciprocal space interactions (V(k)) for surface (a) 
and bulk (b) Cu-Ag alloys, plotted along a high-symmetry direction. The red and blue curves 
represent the chemical and elastic contributions to V(fc), and the sum is plotted by a black curve. 
The results for surface alloys were obtained using 101-layer slabs and a Pd(l 11) substratef. 

interfaces, analogous to the case of surface steps [15]. The competition between the short- 
ranged elastic  repulsion of interfaces and the relaxation energy associated with individual 

t For an anisotropic substrate, such as Pd(lll), the linear relationship between V{K) and [k] still holds, although 
the slope depends upon the direction k. 
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Figure 3. Chemical, elastic andtotal values of the calculated EPIs for Cu-Ag on Pd(l 1 l)arc plotted 
as a function of distance in real space in (a). The elastic contributions are plotted on a different scale 
in (b), where the dashed line illustrates a R~3 dependence characteristic of a continuum model of 
interacting elastic dipolcs. 

interfaces gives rise to a finite p minimum in the elastic contribution to AE(p), and a finite 
\k\ minimum in the elastic contribution to V(k), as shown in figure 2(a). We have performed 
EAM calculations for a number of surface-alloy systems and in each case we have found that 
the minimum elastic contribution to V(k) occurs for values of \k\ equal to roughly 0.1 in units 
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of 2n/a, with a the surface lattice constant. In cases where the chemical interactions favour 
phase separation (i.e. a minimum at k = 0), this implies that the global minimum of the total 
V(k) will be for \k\ intermediate between 0 and 0.1, implying the stability of long-period 
striped superstructures with unit cells spanning roughly 10 or more lattice constants. 

In figure 3(a) the calculated elastic and chemical contributions to the EPIs for 
Cu-Ag/Pd( 111) are plotted as a function of distance in real space. The total interactions (black 
circles) are predicted to be rather weak by the EAM. The small value of the nearest-neighbour 
EPI results from a near cancellation of the much larger chemical and elastic contributions, 
plotted with red and blue circles, respectively. While the chemical EPIs decay very rapidly in 
real space, the elastic pair interactions are characterized by a long-ranged tail, which is plotted 
on a different scale in figure 3(b). The dashed line in figure 3(b) is consistent with a R~3 

dependence characteristic of interacting elastic dipoles. The EAM-SOE results for the elastic 
interactions are found to be consistent with this asymptotic behaviour at large distances. 

To summarize, we have presented the results of an EAM-SOE analysis of the effective pair 
interactions characterizing the mixing energetics of monolayer surface alloys on single-crystal 
substrates. It is demonstrated that the minimum of the Fourier-transformed EPIs is governed 
by a competition between elastic and chemical contributions to V(k). For the Cu-Ag/Pd(l 11) 
system considered here these contributions are of comparable magnitude. It is demonstrated 
that the elastic contribution to V(k) is qualitatively different for surface alloys as compared to 
their bulk counterparts. In particular, for surface alloys this contribution is characterized by a 
finite slope at the origin, ensuring that the minimum in the total V(k) is always displaced from 
the origin. As a consequence, chemical instabilities and short-range order in surface alloys 
should generally be of ordering (i.e. finite |fc|) type. 
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Abstract. The effects of chemical order on the vibrational entropy have been studied using first- 
principles and semi-empirical potential methods. Pseudopotential calculations on the Pd3V system 
show that the vibrational entropy decreases by 0.07&B upon disordering in the high-temperature 
limit. The decrease in entropy contradicts what would be expected from simple bonding arguments, 
but can be explained by the influence of size effects on the vibrations. In addition, the embedded- 
atom method is used to study the effects of local environments on the entropic contributions of 
individual Ni and Al atoms in Ni3Al. It is found that increasing numbers of Al nearest neighbours 
decreases the vibrational entropy of an atom when relaxations are not included. When the system 
is relaxed, this effect disappears, and the local entropy is approximately uniform with increasing 
number of Al neighbours. These results are explained in terms of the large size mismatch between 
Ni and Al. In addition, a local cluster expansion is used to show how the relaxations increase the 
importance of long-range and multisite interactions. 

1. Introduction 

The role of vibrational thermodynamics in phase stability is still poorly understood. 
Traditionally, the effects of vibrations have not even been considered in theoretical phase 
stability studies, which focused primarily on substitutional influences [1-4]. There is growing 
evidence, both experimental [5-12] and theoretical [13-24] that vibrational thermodynamics 
can have a significant influence on phase diagrams. 

Unfortunately, at present there are only the beginnings of a qualitative understanding of 
how differences in vibrational thermodynamics arise. In real systems, various mechanisms 
such as volume differences, bond type differences, internal strain effects, and defect structures 
(impurities, grain boundaries, etc) can all contribute to the vibrational thermodynamics, making 
it difficult to separate out the contributions of each. An advantage of computational approaches 
is that it is possible to manipulate the system being studied so as to isolate different mechanisms, 
for example, by removing thermal expansion or restricting internal relaxations. In this paper 
we will use computational approaches to study how relaxations and bonding changes between 
different chemical orderings influence vibrational entropies. 

The key results can be summarized as follows. First-principles pseudopotential 
calculations for the vibrational entropy of Pd3V indicate that upon disordering the DOn 
phase the vibrational entropy decreases by 0.07fcB [25]. This is somewhat surprising since 
the Z)022 phase is expected to have stiffer bonds, and therefore a lower vibrational entropy, 

0965-0393/00/030295+15$30.00    © 2000 IOP Publishing Ltd 295 



296 D Morgan et al 

than the disordered phase. More detailed analysis shows that despite the small size mismatch 
between Pd and V there is significant relaxation allowed in the disordered phase that is not 
possible in the DO22 structure. The different relaxations occur because any given disordered 
configuration has much lower symmetry than the DO22 phase (although, when the occupations 
are thermodynamically averaged, the averaged disordered phase has higher symmetry than 
D022)- It is shown that the greater relaxation allows a stiffening of the Pd-V bonds, which 
leads to the lowering of the entropy with disordering. 

When the embedded-atom method is used to calculate a local vibrational entropy for 
each atom in Ni3Al, it is found that for an unrelaxed crystal the local entropy increases with 
increasing numbers of Al nearest neighbours, but that this trend disappears when the proper 
relaxations are included [26]. The effects of the relaxations are understood in terms of the 
large size mismatch between the Ni and Al atoms. When no relaxations are allowed, the large 
Al crowd the atoms they surround, reducing the vibrational entropy. When relaxations are 
allowed, the large Al push each other away, which reduces crowding and does not change the 
vibrational properties of a surrounded atom very strongly. A local cluster expansion is used to 
analyse the relaxation effects in more detail, and the results show that the relaxations increase 
the importance of long-range and multisite interactions. 

This paper is arranged as follows. Section 1 contains the introduction. Section 2 contains 
the qualitative framework in which we will analyse the calculations. A Lennard-Jones potential 
is used to demonstrate how the qualitative picture is realized in a simple system. Section 3 
discusses first-principles calculations of the vibrational entropy difference between DO22 and 
disordered Pd3V. Section 4 discusses embedded-atom method calculations of the influence 
of local environments on the local vibrational entropy in ISÜ3AI. Finally, section 5 gives a 
summary and conclusions. 

2. Qualitative framework 

First we will discuss a simple qualitative picture of the effects of changing chemical order on the 
vibrational thermodynamics. We will restrict the discussion to various lattice decorations of a 
fixed parent lattice at a fixed composition. In the harmonic approximation [27], the vibrational 
thermodynamics of a given structure are determined by its dynamical matrix, which in turn is 
given by the force constant matrix and the masses. At a fixed composition and high temperatures 
the masses contribute a constant term to the vibrational thermodynamics and can therefore be 
ignored when considering differences [2]. Changes in the vibrational thermodynamics between 
different lattice decorations must therefore come from changes in the proportions of different 
force constants, or changes in their actual values. 

A sensible starting model for how the force constants are affected by chemical order is 
what we will call the 'bond-proportion model'. This model assumes that each type of bond 
carries with it an approximately fixed force constant, and that changes in the force constants 
with chemical order are due primarily to changes in the proportions of different types of 
bonds. This sort of model is often used to give a simple starting Hamiltonian from which more 
elaborate theoretical calculations are tractable [14,28]. 

If this bond-proportion model is accurate, even qualitatively, there are certain implications 
for the behaviour of vibrational entropies. For example, consider an ordered compound, and 
compare it to the pure elements from which it is made. As a first approximation the force 
constants between unlike species are given by the harmonic mean of the force constants between 
like species. For bonding of this type the bond-proportion model predicts very little change in 
the vibrational thermodynamics upon disordering [14]. For a strongly ordering material it is to 
be expected that bonds between unlike species are more stable, and therefore have somewhat 
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suffer force constants than the harmonic mean of the bonds between like species. The suffer 
average force constants would generally cause the ordered phase to have a lower vibrational 
entropy than the average of the pure elements (which have only like neighbour bonds). Define 
the vibrational formation entropy of a binary compound Ai_cBc by 

A-Sform = 5ord — (1 — c)SA — cSB (1) 

where 5ord, 5A, and 5B are the vibrational entropies of the ordered, pure A, and pure B materials, 
respectively. The above arguments show that the bond-proportion model predicts that for an 
ordering alloy the vibrational formation entropy would be negative. Another implication of 
the bond-proportion model is that for an ordering alloy, the disordered phase will have a larger 
vibrational entropy than an ordered phase of the same composition. This follows from the 
fact that the disordered phase has fewer unlike neighbour bonds associated with stiff force 
constants than the ordered phase. 

Unfortunately, neither experiments nor direct first-principles calculations support the 
predictions of the bond-proportion model in general. Calculations of the high-temperature 
limit of A5form based on .experimentally measured force constants and densities of states 
show that many ordered compounds have positive values of A5form [12]. Furthermore, first- 
principles calculations on the Cu-Au system found positive values of A5form for all the ordered 
structures studied [23]. These results are not consistent with the bond-proportion model. 

Experimental measurements for a number of systems [6-9,11] have consistently found 
that the vibrational entropy increases with disordering, which matches the predictions of the 
bond-proportion model. On the other hand, first-principles results for Ni3Al, which is a very 
strongly ordered compound, essentially show no change in entropy between the ordered and 
disordered phases [22]. 

We propose that to explain, even qualitatively, the changes in vibrational entropy, one must 
go beyond a simple bond-proportion model and incorporate size effects. By size effects we 
mean the effects on the force constants that are associated with compression and stretching of 
the bonds. Size effects are not included in the simple bond-proportion model, where all bonds 
are considered fixed in their strength. For example, if elements A and B have very different 
sizes, there is no reason to expect A-A bonds to have similar force constants in A and B rich 
environments, since the A-A bonds will be of very different lengths in the two cases. 

An intuitive understanding of the interplay between size and bond-type effects can be 
obtained by considering a simple nearest-neighbour Lennard-Jones potential. This potential 
has been used to calculate the change in the value of the vibrational thermodynamics between 
ordered L10 and a fee disordered phase in the harmonic approximation. In the high-temperature 
limit the relevant thermodynamics can be calculated from the logarithmic average of the density 
of states ({In co)), which is defined by 

I (In») = /     ln(co)g(co)dco (2) 
Jo 

where g(co) is the vibrational density of states and co is the frequency. Define the change in 
(In co) by A (In co) = (In w)disordered - (In »)0rdered- The change in vibrational free energy (AF) 
and entropy (A 5) with disordering can then be written simply as 

AF = kBTA{lna>) (3) 

AS = -kBA(\nco). (4) 

The disordered phase was modelled by randomly distributing A and B type atoms on a cube- 
shaped 256-atom supercell of fee, where the concentration was constrained to remain at A- 
50 at% B. Calculations were converged to within ±0.01 in (Inco) with respect to ^-points. 
The Llo structure was completely relaxed whereas the corresponding disordered phase was 
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Figure 1. A (In co) as a function of the effective bulk modulus and lattice parameter of the A-B 
bonds. A-A and B-B bonds are fixed to an effective bulk modulus of 2 Mb and lattice parameter 
of 3.5 Ä. The calculations are all performed with a nearest-neighbour Lennard-Jones potential. 

only relaxed internally, keeping the overall volume per atom fixed Lin and the three supercell 
lattice parameters equal to each other. This removed any complications that might occur due 
to volume changes between the two phases. No thermal expansion effects were included. All 
calculations were performed using the GULP program [29]. 

In figure 1 the values of A (In co) are plotted as a function of the bulk modulus and lattice 
parameter that would be obtained for an fee structure made of A-B bonds only (this is not 
physically realizable but characterizes the A-B bond properties in a transparent manner). The 
A-A and B-B bonds are all fixed to give a bulk modulus of 2 Mb and a lattice parameter of 
3.5 Ä for pure A and B lattices. 

Consider first the values along the horizontal line for which the A-B lattice parameter 
is equal to 3.5. Here all the bonds are the same length and there are no size effects, so it is 
expected that the bond-proportion arguments should be valid. This is seen to be the case by the 
fact that for softer A-B bonds one obtains A (In to) < 0, but for stiffer A-B bonds one obtains 
A(lnw) > 0. Now consider the values along the vertical line for which the A-B bulk modulus is 
equal to two. Here all the bonds have the same strength, so any changes in the thermodynamics 
between ordered and disordered phases are due to size effects. For smaller A-B bonds the 
unlike bonds are stretched by the larger A-A and B-B bonds and therefore the A-B bonds are 
actually weaker than they would be at their equilibrium length. This causes an effect similar 
to what is seen for the weak A-B bonds with no size effects, and one obtains A (In co) < 0. 
Similar arguments show why larger A-B bonds yield A (In co) > 0. For the intermediate cases 
the bond-proportion and size effects both contribute. Although the nearest-neighbour Lennard- 
Jones potential demonstrates how vibrational thermodynamics are influenced by both size and 
bond effects, their complex interplay cannot be reliably investigated with such a simple model. 
Therefore, we now turn to more accurate potential and first-principles models. 
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3. First-principles study of Pd3V 

PCI3V is a system for which one might expect the bond-proportion model to be accurate. Pd 
and V have a very small size mismatch [30] 

(VPd - Vv) —-^ — = 0.06 
(Vpd + Vv)/2 

so size effects should not be too large. Pd3V forms in an ordered D02i structure for 
temperatures below 1090 K [31], so it is to be expected that Pd-V bonds will be stronger 
than the harmonic mean of Pd-Pd and V-V bonds. In addition, Pd and V are on either side of 
the transition metals in the periodic table. In general, bulk moduli tend to reach a maximum 
near the middle of the transition metals series. To the extent that a Pd-V bond resembles 
one between two elements of the middle of the transition metals series, it is to be expected 
that the Pd-V bonds will be stiffer than Pd-Pd or V-V bonds. Given these arguments, the 
bond-proportion model predicts that the vibrational entropy should increase upon disordering 
Pd-V, since fewer Pd-V bonds are present in the disordered phase. 

First-principles methods have been used to calculate the vibrational thermodynamics of 
a few different structures of the Pd3V system. Calculations have been performed with the 
quasiharmonic method [27], which extends the harmonic method to approximately include 
anharmonic terms by allowing volume dependent frequencies. All the entropy values quoted 
for Pd3V were calculated in the high-temperature limit at the zero-temperature equilibrium 
volumes of the structures. The effects of thermal expansion are not reported for simplicity as 
they are very small, contributing less than 0.01ftB to the entropy difference between the D012 

and disordered phases at a temperature of 1000 K. The required force constants were fit to 
ab initio calculations offerees in supercells with slightly displaced atoms [32]. 

The calculations were made computationally feasible by restricting displacements to 
consist of whole planes of atoms, thereby maintaining as much symmetry as possible. Planar 
force constants were obtained from the displacements and forces according to the relation 

-Fa(n) = J2\aß(n-m)uß(m) (5) 
m,ß 

where Fa(n) is the force on atom a in layer n, uß(m) is the displacement of atom ß in layer 
m, and Xaß(n — m) is the (n — m)th layer planar force constant in the direction normal to 
the planes. The planar force constants can be related to the more usual force constant matrix 
between atoms a and ß by the formula 

-Xaß(n)= J2 ITß(R) (6) 
(R\e-(R+Tap)=d„) 

where dn is the distance between the planes being considered, e is the normal vector to the 
planes, raß is the basis vector connecting atoms a and ß in a unit cell, and R is a lattice 
translation vector. Daß (R) is the usual force constant matrix between atoms a and ß, separated 
by basis vector Taß and lattice vector R, which is calculated by second derivatives of the 
energy with respect to displacements of those atoms. Equation (6) shows that the planar force 
constants are obtained by collecting the usual force constants for all atoms in the appropriate 
plane, projecting these force constants along the plane normal, and then summing the resulting 
terms. By performing calculations along a number of directions and applying symmetry 
relations it is possible to determine all the desired force constants from equations (5) and (6). 

Our ab initio calculations were performed within the local density approximation (LDA) 
using the VASP [33,34] package, which implements ultra-soft [35] pseudopotentials [36]. 
To ensure that the errors in the calculated forces did not introduce errors in the vibrational 
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Table 1.  Correlations of the structures used.  p„ denotes the «th nearest-neighbour correlation 
while li,„„ denotes a triplet made of overlapping pi, p,„ and />„ pairs. 

Structure P\ Pi '111 '112 '113 '114 

L\i 0 1 1/2 -1/2 1/2 -1/2 

DO22 0 2/3 1/2 -1/6 1/6 1/6 

SQS-8 1/4 1/3 -1/4 0 -1/12 -1/6 

Random 1/4 1/4 -1/8 -1/8 -1/8 -1/8 

entropies that exceed 0.02Ä:ß, the following parameters were used. The number of ^-points 
in the first Brillouin zone was chosen to be approximately (14)3 divided by the number of 
atoms in the unit cell. A high energy cutoff of 365 eV was used to accurately determine 
the equilibrium cell shapes, while a cutoff of 211 eV was sufficient to obtain accurate 
forces. 

Since we were interested in the change in vibrational thermodynamics upon disordering 
it was necessary to be able to calculate vibrational properties of the disordered phase. The 
disordered state was modelled by a special quasirandom structure (SQS) [37]. The SQSs 
are small unit cell structures that are constructed to mimic the short-range correlations of a 
truly random structure as much as possible. They have been shown to give good estimates 
of disordered values for a number of electronic [38] and vibrational [26] properties. For this 
study an eight-atom SQS (SQS-8) is used, which we believe is large enough to accurately 
represent the vibrational thermodynamics of the disordered lattice, but is small enough to be 
computationally tractable. A useful way to represent the SQS-8 is in terms of correlations. 
These are defined as follows. Assign to each lattice site the pseudospin value of -1 or +1, 
depending on whether the site is occupied by a Pd or V, respectively. Any cluster of sites 
can then be assigned a cluster function, which is simply the product of the pseudo-spin values 
on all the sites in the cluster. A correlation is a cluster function averaged over all symmetry 
equivalent clusters in the parent lattice. Structures with similar correlations tend to have atoms 
in similar environments. The correlations for the SQS-8 used in this work, as well as the 
Ll2, D021, and a truly random structure, are given in table 1. Note that the correlations for 
the SQS-8 and random structures are quite similar, showing that the SQS-8 has similar local 
environments to the disordered phase. 

In calculating the force constants some choice must be made about how many to include. 
Table 2 shows the convergence of the entropy as a function of the number of neighbours 
included in the force constant matrix. Unfortunately, computational limitations restrict us to 
including only first-neighbour force constants in the SQS-8 structure. It can be seen that over 
the first three neighbour shells the total entropy of the Ll2 and DO22 structures change by 
about 0.1&B, but that the entropy difference between them is converged to within about 0.02kB 

by the first-neighbour shell. This suggests that the entropy difference between the SQS-8 and 
DO22 structures is probably also well converged after the first-neighbour force constants. 

Table 2 shows that the entropy of the disordered phase is O.QlkB below that of DO21. The 
major sources of error in this result are likely to be the use of the SQS-8 to approximate the 
disordered phase and the limiting of the force constants to the nearest-neighbour shell. The 
error due to the SQS-8 can be estimated by considering differences between L\2 and D022- 
These two structures have an entropy difference of 0.08AB and correlations that are identical 
for the first-neighbour shell and fairly close after that. For comparison, the SQS-8 and totally 
random structures also have identical first-neighbour correlations and farther range correlations 
that are much more similar than those of Ll2 and D022- It is therefore to be expected that 
the entropy difference between the SQS-8 and random structure would be significantly less 
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Table 2. Vibrational entropy in units of kB as a function of the interaction range included in the 
spring model. Range is expressed as the number of nearest neighbour shells. Only stretching and 
bending terms are included for the column labelled l(sb) (see text). 

Structure l(sb) 1 2 3 

L\2 -4.40 -4.39 -4.44 -4.48 
D022 -4.48 -4.47 -4.53 -4.58 
SQS-8 -4.53 -4.54 

LI2-DO22 0.08 0.08 0.08 0.10 
SQS-8-DO22 -0.05 -0.07 

than the 0.08kB entropy difference between Ll2 and D022- Based on the correlations shown 
in table 1 we estimate the error associated with using the SQS-8 at less than 0.04£B. The 
error due to the use of only nearest-neighbour force constants we believe to be about 0.02/fcB, 
again based on comparison to the entropy difference between the Ll2 and D022 structures. 
Even if we make a very pessimistic error estimate and base the rate of convergence on the 
absolute vibrational entropies, rather than their differences, we still get an error less than about 
0. l&B- Even in the presence of these errors, we can still exclude the possibility that the change 
in entropy upon disordering is large and positive, which is the most important feature of our 
calculations. 

Indeed, the decrease in vibrational entropy upon disordering is in the opposite direction 
from what would be expected based on the bond-proportion model discussed above. The 
reason is that size effects, even in this system with almost no apparent size mismatch, contribute 
significantly to the vibrational thermodynamics. We argued earlier that a Pd-V bond might 
behave similarly to a bond between two elements of the middle of the transition metal series, 
which typically have a larger stiffness. However, elements of the middle of the transition metal 
series are also characterized by smaller lattice constants. One would then expect Pd-V bonds 
to be shorter than V-V or Pd-Pd bonds. As we will see, the short Pd-V bond length is indeed 
at the source of the important relaxations observed in Pd-V. The importance of size effects in 
this system will be demonstrated by analysing bond strengths and lengths. 

Unfortunately, there is no single parameter which represents the strength of the force 
constants between two atoms, since this is, in general, a nine-element matrix. A great 
simplification is to represent the force constant matrix in terms of two parameters, a stretching 
and a bending term. This determination of the stretching and bending terms is done in the 
following manner. Start by considering a 3 x 3 force constant matrix between two atoms, 
represented in cartesian coordinates with one axis along the bond between the atoms. The 
diagonal terms of the force constant matrix then represent a stretching and two bending terms, 
which can be reduced to one by requiring the bending terms to be orientation independent. 
The remaining off-diagonal terms are assumed to be zero. 

The 'reduced' force constant matrix is thus fully defined by the elements of its diagonal: 
an element S (stretching), corresponding to the bond direction and two elements B (bending) 
corresponding to the other two directions. By a simple rotation, the reduced matrix can then 
be transformed back into the usual cartesian coordinate system. It will no longer be diagonal, 
but all the elements will still be given by linear functions of S and B. The values of S and B 
are then determined by fitting (by a least-squares method) the reduced force constant matrices 
to the forces obtained from ab initio calculations, as described at the beginning of section 3. 

It is very interesting to note that the entropies calculated with only stretching and bending 
terms differ by less than 0.01&B from the entropies calculated with the exact nearest-neighbour 
force constant matrix for all the cases considered (see column l(sb) in table 2). 
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Figure 2. Shift in average stiffness (defined as the spring constant along the stretching direction) 
and bond length upon disordering. The fitted line of stiffness versus length is shown for reference. 

Figure 2 shows the average stiffness of Pd-Pd and Pd-V first-neighbour bonds as a function 
of their average distance in both the ordered DOn and Ll2 structures and the SQS-8. The 
stiffness here is taken to be the stretching term defined above. No V-V bond results are 
included as there are very few of those (none in the ordered phases). Figure 2 shows that in 
disordering there is a significant change in both the Pd-Pd and Pd-V bond lengths. The change 
in bond lengths occurs because in the ordered phase all the bonds are constrained by symmetry 
to be the same length, but in the disordered structure the naturally shorter Pd-V bonds can 
contract and the naturally longer Pd-Pd bonds can expand. As would be expected, when bonds 
contract (expand) their stiffness increases (decreases). The contraction of the Pd-V bonds is 
much greater than the expansion of the Pd-Pd bonds and it is this imbalance which leads to an 
overall stiffening of the disordered phase and the lowering of the entropy with disorder. 

The importance of the relaxations can be seen more quantitatively by removing them in 
an approximate manner. To do this, we use the stretching and bending model discussed above. 
We take the stretching and bending parameters for each nearest-neighbour bond in the SQS-8 
structure and compute an average for each bond type (Pd-Pd, Pd-V and V-V). This averaging 
is needed because a given type of bond (e.g. Pd-Pd) may have slightly different values of S and 
B, depending on the bond's local environment. These average Pd-Pd, Pd-V and V-V force 
constants matrices are an approximation to the 'true' force constants we would expect with no 
symmetry constraints. These force constants are then used to calculate the entropy for both the 
ordered DOn and SQS-8 structures and the increase in entropy with disordering is found to be 
0.26&B- This calculation uses a single set of bond length independent force constants for both 
the ordered and disordered phases and therefore does not include the relaxation differences 
between the two phases. Without the relaxation effects involved the bond-proportion model 
applies and the expected entropy increase is seen to occur. Therefore, we conclude that the 
relaxations are what cause the bond-proportion model to give an incorrect prediction and the 
vibrational entropy to decrease with disordering. 

It can be shown that the stretching and bending force constants are approximately 
independent of the chemical environment, provided that the proper bond length is used. By this 
it is meant that a given bond, say Pd-Pd, will have similar values for S and B for a given bond 
length, whether the Pd-Pd bond is in a L12, D On, or SQS structure. This raises the possibility 
of using the values of S and B determined from simple cases to obtain force constants for a 
variety of complex chemical environments. 
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This idea is similar to that explored by Sluiter et al [39], where an attempt was made to 
develop transferable force constants by averaging over configurations. Sluiter et al found that 
the averaged force constants were not able to accurately represent the vibrational free energy 
of different chemical orderings. They attribute at least part of this problem to violation of 
invariances that the force constants must satisfy. We believe the approach chosen here may 
be more accurate than the averaged force constants of Sluiter et al for two reasons. Most 
importantly, the stretching and bending model allows the force constants to depend on bond 
length, which the work presented in this paper proves to be very important. In addition, by 
using only the diagonal S and B terms, the force constant matrices automatically satisfy all 
the invariances associated with crystal symmetry. This should alleviate some of the problems 
associated with violations of the invariances. Further testing of the stretching and bending 
model is necessary before its accuracy can be established. 

A more detailed discussion of this work on Pd3V can be found in [25]. 

4. Embedded-atom method study of M3AI 

Ni3Al is ordered in the L\2 structure essentially up to its melting point at about 1670 K [31], 
although it is possible to create a metastable disordered phase. There have been a number of 
experimental [6,40] and theoretical [19-22,26] studies of the vibrational thermodynamics of 
ordered and disordered Ni3Al. The experiments and calculations have given a range of results 
for the change in entropy with disordering, probably due to variations in potentials used and 
differences between the perfect crystals modelled in calculations and those actually obtained 
in experiment (for further discussion of this, see [12,22,41]). In this section we will not focus 
on the overall change in vibrational thermodynamics between phases, but instead on how the 
local environment of a given atom affects its vibrational behaviour. 

The advantage of a local approach is that it allows one to directly identify how each atom 
is being influenced by its surroundings. The local vibrational thermodynamics of an atom can 
be calculated by the following approach. The total density of states, g{co), can be written 

g(co) = J2 [rT^l E / dfc \e«iK' JW2s<-°> ~ ^fc)) = I>-(ü,)    (7) 

aK    L(27t)    J      j      J UK 

where Q is the volume per atom, a and K denote a Cartesian direction and atom in the unit cell, 
and k and j are the wavevector and branch of each phonon mode. ea(jc; jk) is the value of the 
eigenvector for mode jk associate with direction a and atom K, and a>j(k) is the frequency 
of mode jk. The gaK(co) are projected densities of states, and represent how much of the 
total density of states can be attributed to motion of atom K in direction a. In this study we 
will calculate the projected densities of states onto an atom, gK(a>), which simply involves 
summing gaK(co) over the possible values of a. Once the projected density of states onto an 
atom has been calculated the local vibrational thermodynamics can be found in the harmonic 
approximation by integrating against the appropriate function [42]. 

All the calculations shown here for Ni3Al were performed using the embedded-atom 
method [43^-5] with the Foiles and Daw Ni3Al potential [46]. Calculations are converged to 
within less than 0.01fcB with respect to density of states integration and fc-point sampling. 

In order to investigate the effects of various local environments the local entropy was 
calculated for every atom in a randomly decorated 256-atom supercell of Ni3 Al. The entropies 
were calculated at a temperature of 600 K, which is near the Debye temperature for this 
material [40]. The local entropies are plotted in figure 3 as a function of the number of Al 
nearest neighbours for two cases: one where the atoms were forced to remain on their ideal 
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Figure 3. The local entropy forNi (open circles) and Al (crosses) atoms as a function of the number 
of Al nearest neighbours, as determined from a disordered configuration. Results are given for the 
unrelaxed (a) and relaxed (b) structures. 

lattice sites and one where the atoms were allowed to relax to their equilibrium positions. All 
these calculations were done at the equilibrium volume of the unrelaxed disordered phase. 

There are two important things to notice about these results. The first is that the Ni atoms 
have consistently higher local entropies than the Al atoms. There are two contributions to 
this difference. First, the Al generally have stiffer force constants than the Ni, which tend to 
decrease the Al entropy relative to the Ni. A somewhat larger effect is that Ni is about 2.2 
times as heavy as Al, which again causes it to have a larger vibrational entropy than Al. 
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Figure 4. The average nearest-neighbour distance for Ni (open circles) and Al (crosses) atoms 
as a function of the number of Al nearest neighbours, as determined from a relaxed disordered 
configuration. The average nearest-neighbour distances for the unrelaxed configuration are given 
by the solid line. 

The other important thing to notice is that the overall behaviour of the entropy as a function 
of local environment changes dramatically when relaxations are included. When no relaxations 
are allowed the entropy decreases for both types of atoms as more Al neighbours are included. 
When relaxations are allowed the entropy becomes much noisier, and seems fairly flat, or even 
slightly increasing, as a function of the number of Al neighbours. To make sense of these 
results we need to consider size effects. 

The size mismatch between Ni and Al is very large [30] 

W»-™   =0.41 
(VAi + VNi)/2 

which means that relaxation effects are likely to be very important.   Figure 4 shows the 
average distance to the nearest-neighbour shell for all the atoms as a function of the number 
of Al nearest-neighbour pairs.  For the unrelaxed case the neighbours are always the same 
distance, but the relaxation allows the neighbours to spread apart more and more as they 
become predominately made up of large Al atoms. The behaviour of the local entropy can 
now be understood. When there is no relaxation, replacing Ni neighbours with Al neighbours 
creates progressively more crowding of the central atom. This leads to compressed bonds, 
which are suffer, and the vibrational entropy of the central atom decreases. When relaxation 
is allowed to take place the large Al atoms can move apart to make more space, the bonds 
of the central atom are no longer compressed, and the atom's entropy does not decrease with 
increasing numbers of Al neighbours. 

It is interesting to consider the predictions of the bond-proportion model for the local 
entropy of the unrelaxed case.  Ni has a bulk modulus that is more than twice as large as 
that for Al (the potentials fit the experimental bulk moduli exactly) [46], so based on the pure 
elements one would expect that the Ni-Ni bonds would be much suffer than the Al-Al bonds. 
As more Al atoms are added to the environment of a Ni or an Al one would expect a decrease 
in the average bond stiffness (because of fewer bonds to Ni) and an increase in vibrational 
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entropy. These predictions are the opposite of what is seen for the unrelaxed case. The failure 
of the bond-proportion model is again due to the influence of size effects. Ni3 Al is between 
pure Ni and pure Al in average lattice parameter, so the Al-Al bonds are compressed and the 
Ni-Ni bonds are expanded in the unrelaxed lattice.  This strain effectively brings the bond 
stiffness of Al-Al bonds above that of Ni-Ni bonds. If one takes this size induced reversal of 
bond stiffnesses into account, then the bond-proportion model predicts the correct qualitative 
behaviour. The change in behaviour that is seen when the system relaxes is due in part to the 
release of some of the strain in the bonds, making Ni-Ni bonds stiffer and Al-Al bonds less stiff. 

Figure 3 shows that the nearest-neighbour environment determines the local entropy quite 
precisely when there are no relaxations, but relaxations introduce other significant influences on 
the local thermodynamics. This can be made more quantitative by constructing a local cluster 
expansion. The cluster expansion formalism [3,4,37] is used to represent the dependence of 
functions of lattice decoration in terms of real-space interactions. In section 3 we defined cluster 
functions. It can be shown that these form a complete orfhonormal basis for functions of lattice 
decoration. The cluster expansion is just an expansion in the basis of cluster functions. The 
coefficients for each cluster function are called effective cluster interactions (ECI). Because we 
are studying local quantities we will make use of a local cluster expansion [26,41], in which 
there are somewhat different independent ECI than in the traditional cluster expansion. We 
make a local cluster expansion by fitting the local entropies for all the 256 atoms in a large 
disordered cell to ECI for the first eight neighbour shells (there is a point and pair ECI for each 
shell). The results of this fit, both the ECI and the root-mean-square (RMS) error between the 
true and fitted entropy values, are shown for both the relaxed and unrelaxed case in figure 5. 

The local cluster expansion clearly shows the dramatic influence of relaxations. When 
no relaxations are present the expansion is dominated by the first-neighbour shell, which can 
be seen by the large first-neighbour ECI and the very low RMS error obtained with only the 
first shell.   When relaxations are included the ECI become much longer range (the largest 
ECI is in fact in the fifth-neighbour shell).   The introduction of longer-range interactions 
when relaxations are included has also been found in cluster expansions of the total energy 
[4,48-51]. In addition, in the relaxed case the RMS error is almost constant after the fifth- 
neighbour shell, even though it is about five times as large as the corresponding error in the 
unrelaxed case. The failure of longer-range pairs to improve the RMS error shows that multisite 
interactions are contributing to the local entropy in the relaxed case. Furthermore, the ECI go 
from being primarily negative to primarily positive when the relaxations are included. This is 
the manifestation in the cluster expansion of the above discussed release of strained bonds with 
relaxation. Finally, note that the point ECI are generally more important than the pair ECI. 
Point ECI contribute the same amount to a given atom's local entropy independent of the type 
of the atom. This means that the vibrations of both Ni and Al are influenced similarly by their 
environment. This is not consistent with the bond-proportion model where one would expect, 
for example, a very different influence of an Al neighbour on a Ni than an Al. The dominance 
of the point ECI is just one more way in which the size effects show their importance. 

In this section we have shown that for Ni3Al the local entropy of an atom is primarily 
determined by the area in which it is free to move. Without relaxation, large Al neighbours 
crowd a central atom, inhibiting its vibrations, but when relaxation is allowed the Al spread out 
and the crowding effect essentially disappears. Without relaxation, the compressed Al-Al and 
Al-Ni bonds are effectively stiffer than the expanded Ni-Ni bonds, despite the much larger 
bulk modulus of pure Ni than pure Al. It is clear that the local vibrational thermodynamics of 
Ni3Al cannot be understood in terms of a simple bond-proportion model and that the behaviour 
is dominated by the large size effects. 

A more detailed discussion of this work on Ni3 Al can be found in [26]. 
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Figure 5. The results of a cluster expansion of the local entropy for an unrelaxed (a) and relaxed (b) 
disordered configuration. The upper panels show the RMS error in the local entropy values predicted 
by the ECI compared to the exact calculated values, as a function of the number of neighbour shells 
in the cluster expansion. The lower panels show the point (full) and pair (broken) ECI for each 
neighbour shell. 

5. Conclusions 

This work discusses the importance of size effects in the behaviour of vibrational 
thermodynamics. We have shown that a simple bond-proportion model, in which each bond 
type is assumed to have a fixed stiffness, cannot reliably explain the configurational dependence 
of the vibrational thermodynamics, even for systems with small size mismatch. 

First-principles calculations on the Pd3V system predict that the vibrational entropy 
decreases by 0.07&B upon disordering the DO22 phase.  This decrease is explained by the 
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stiffening of the disordered phase that occurs as the broken symmetry allows the Pd-V bonds 
to contract. 

We have also performed embedded-atom method calculations of the local vibrational 
entropy for all the individual atoms in a large Ni3 Al supercell. The local entropy, as a function 
of the number of Al nearest neighbours, decreases when no relaxation is included, but remains 
fairly flat on average when relaxation is included. This can be explained by the fact that the 
larger Al atoms crowd a central atom when relaxations are not allowed, but push apart and allow 
for more vibrations when relaxations are included. A local cluster expansion is performed and 
shows the increased contributions of long-range and multisite ECI due to the relaxations. 

This work highlights the importance of relaxation effects in vibrational studies. Ignoring 
or treating inaccurately the relaxation effects can lead to errors of a qualitative nature, even 
for systems with very small size mismatch. This problem is particularly challenging for those 
involved in first-principles research, where accounting for the dependence of the force constants 
on the magnitude of the local relaxations can come at a high computational cost. This work 
does suggest some methods by which relaxation effects can be included in a computationally 
tractable manner. The use of the stretching and bending model, with the force constants 
parametrized as a function of bond length, seems to give very accurate results and could 
effectively provide transferable force constants to allow calculations for very complex unit 
cells. This approach is presently under further development. 
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Abstract. The physical mechanisms which may contribute to the energy and entropy of mixing 
in oxide systems are identified and discussed. Ionic size, magnetism and electrostatics can all 
contribute to the configurational energy dependence of transition-metal oxides. While the many 
sources of substitutional disorder make configurational entropy an essential contribution to the free 
energy of oxides, electronic and magnetic entropy may be of the same order of magnitude. This is 
illustrated with some first-principles results on LJC0O2 and LiMn02. 

1. Introduction 

First-principles thermodynamics of crystalline materials is often referred to by the more general 
name of alloy theory, reflecting its historical focus on metallic mixtures. Accordingly, first-, 
principles calculations have been applied to study a large number of binary metals [1-11], and 
even some ternaries [8,12,13]. An excellent overview of all the metallic systems investigated 
up to 1994 can be found in the review article by de Fontaine [14]. In the more recent 
decade much of the alloy theory formalism has been transferred to semiconductor alloys, 
with significant success [15]. 

Applications to oxides have been considerably more scarce, although the stimulus of 
high-temperature superconductivity led to some ab initio alloy work on the phase diagram of 
Y2Ba2Cu307_ä [16,17] in the early 1990s. Perovskites with mixed B sites have also received 
attention because of their technological importance as ferroelectrics and dielectrics [18-22]. 

In this paper we identify the differences and similarities between alloy theory in oxides 
and metals. The varying degrees of electron localization possible in oxides poses significant 
challenges to a proper description of the entropy and energy as will be illustrated with examples 
from LixCo02 and LiMnC>2. 

2. Sources of configurational entropy in oxides 

In metallic systems, configurational entropy is the key to reproducing the correct phase 
diagram topology of alloys. Similarly, it is an essential part of a correct description of oxide 
thermodynamics. There are several sources of substitutional disorder in oxides which may 
contribute to the configurational entropy. As in metals, multiple cations or anions can share a 
common sublattice. This is, for example, the case in Ba(Zni/3Nb2/3)03 where Zn and Nb ions 
are distributed over the cubic lattice of B-sites in the perovskite structure (figure 1(a)) [21]. 
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B-site 

(a) 

(c) 

(b) 

Figure 1. (a) Cubic pcrovskitc unit cell. The B sites (white circles) form a simple cubic lattice. 
(b) In Ca.,Mg|_rO rocksalts the Ca and Mg ions mix on the fee lattice of octahedral interstitials 
(c) LiCoO? is a rocksalt with Li and Co ions ordered in alternating planes of octahedral sites along 
the rocksalt (111) direction. Lithium can be removed electrochemically leading to order-disorder 
transitions between lithium and vacancies. 

In CaxMg,„xO the cations share a common fee lattice, formed by the octahedral interstices 
of the close-packed oxygen framework (figure 1(b)) [23]. While this type of cationic disorder 
is quite similar to that in binary metals, the filled anion array in oxides plays a key role in the 
interaction between the cation sites. 

Because many oxides can be seen as close-packed anion arrays with metal interstitials, 
many structures are at least mechanically stable against removal of a substantial fraction of 
metal ions. This can lead to configurational disorder between filled and vacant sites. LivCo02 
(figure 1(c)) is an extreme example of this type of substitutional disorder as x (the amount 
of Li per formula unit) can be varied between 0 and 1 with little or no variation of the host 
structure. Over this composition range the Li ions go through several order-disorder reactions 
with the vacancies [24-27] 

Due to their structural role the concentration of anion vacancies is usually not as large as 
for cations and often requires the presence of large cations such as Ba2+ or Pb + that reside 
in the oxygen framework. Hence, YBa2Cu307_j can have oxygen-vacancy order-disorder 
transitions [16,17] as does Ba2ln20g_ä [28,29]. 
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One should keep in mind that the types of disorder mentioned above can occur 
simultaneously on different sublattices in one system. For example, in pyrochlores of 
composition A2B2O7 the A and B cations order on the sites of an fcc-like sublattice while 
oxygen-vacancy ordering takes place on the tetrahedral interstitials of this lattice [30-32]. 
Partial disorder on these sublattices is intricately linked [33]. Similarly, disorder on the 
transition metal cation sublattice of materials such as Lix(Ni, Co)C>2 is found to depress 
the ordering tendency of Li and vacancies [34], Such coupled order-disorder problems are 
common in oxides as they often arise from the charge compensation mechanism that couples 
the off-stoichiometry on different sublattices. For example, when ZrC>2 is alloyed with CaO, 
the mixing of Ca onto the Zr sublattice is accompanied by the creation of oxygen vacancies 
on the anion sublattice. The configurational state of each of these sublattices can be strongly 
coupled, even in a fully-disordered state. 

Coupling between disorder on various sublattices can be dominated by symmetry, coupling 
interactions or correlated fluctuations [33]. 

3. Configurational expansions 

The methods to describe configurational disorder and its effect on a free energy are now well 
developed. We review them here only briefly, with some attention paid to the coupling of 
disorder between various sublattices. The approach consists of coarse graining the faster 
degrees of freedom (such as vibrational and electronic) [35] until only substitutional degrees 
of freedom remain in the partition function. The free energy corresponding to such a partition 
function can then be calculated by standard methods for lattice models. The Hamiltonian of the 
effective lattice model is obtained with a cluster expansion [36]. The cluster expansion method 
is described in several excellent reviews [14,15]. Basically, it characterizes the configurational 
state with occupation variables CT,- for each lattice site i (e.g. CT, is ±1 depending on occupation 
of site i by species A or B, where one of these can be a vacancy). The energy is then expanded 
in polynomials of the occupation variables. The polynomials <pa correspond to products of 
occupation variables within a cluster of lattice sites a, 

and are referred to as cluster functions. These clusters are, for example, pairs, triplets, 
quadruplets of sites, etc. Their corresponding functions form a complete and orfhonormal basis. 
Any property of a configuration, such as the energy, volume, etc can, therefore, be expressed as 
a linear combination of the polynomials ipa. A cluster expansion of the configurational energy, 
for example, takes the form 

E = V0 + J^Va-<pa (2) 
a 

where the summation extends over all clusters a, and VQ and the Va are constant expansion 
coefficients. The expansion coefficients for the energy are generally called effective cluster 
interactions (ECIs). 

Typically, the values of the ECIs are calculated from first principles energy models by 
fitting the expansion to the energy of a series of ordered configurations described by small 
supercells. The fit to the first-principles energies can be performed with either a least-squares 
procedure or a more elaborate method based on linear programming techniques [1]. 

The cluster expansion can be extended to systems in which multiple sublattices contain 
substitutional disorder [33]. An appropriate basis for the system as a whole can be constructed 
from the cluster functions describing the disorder on each individual sublattice. If cpa and 6ß 
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are respectively the cluster functions describing the binary disorder on two separate sublattices, 
the new basis function 

faß = <PaOß (3) 

can describe the state of the total system. This basis offers an unbiased description of the 
configuration of all ions and does not rely on any simplifying assumptions often used in 
modelling defects in oxides (such as the association between vacancies and dopant cations, 
etc). 

4. Factors that contribute to the effective cluster interactions 

In metallic systems, the ECIs are largely defined by direct metal-metal orbital overlap. We 
discuss below the physical phenomena that determine the ECI in oxides as they can be 
considerably different from those in metals. 

Ionic size effects are often the most dominant contribution to the effective interactions in 
oxides. Insertion of a large cation into the interstitial of a close-packed oxygen framework 
will displace the oxygen ions around it, thereby changing the energy required to insert an 
ion at a neighbouring site. Note that the relaxation of oxygen ions around an inserted cation 
is not necessarily outwards, since it is a competition between an inward relaxation (due to 
the electrostatic attraction between the oxygen and cation) and the outward relaxation due 
to steric effects. In closed-shell oxides, such as MgO or CaO, indirect interaction through 
oxygen displacements is practically the only contribution to the ECIs, and empirical energy 
models with no direct cation-cation interaction can qualitatively reproduce the experimental 
phase diagram [23]. Many cation ordered structures can be explained on the basis of size 
alone. 

Covalent interaction through direct overlap of atomic wavefunctions, one of the main 
factors which determines the ordering or phase separation in metals [37,38], has often a small 
effect in oxides. This is due to the rather contracted nature of orbitals (e.g. in 3d transition- 
metal oxides) or the complete absence of any valence electrons (e.g. closed-shell oxides such 
as MgO). 

Electrostatic interactions are obviously a key contribution to the effective interactions 
between differently charged cations. In some cases, the electrostatic interactions dominate 
over all others and the stable structure can be obtained by simply minimizing the Madelung 
energy of a distribution of ions over fixed lattice sites. Examples include the perovskites 
Ba(Mgj/3Ta2/3)03 and Ba(Zni/3Ta2/3)03 [20,21,39-41] in which the B cations are ordered 
in a 1:2 repeat period along the (111) cubic perovskite direction. Several studies [20,42] have 
indicated that this configuration is the one with the lowest electrostatic energy for a system 
with composition (1/3, 2/3) on a cubic lattice. 

In other systems relaxation effects and electrostatics compete for different ground states 
[43]. ABO2 ordered rocksalts form the LiScC>2 structure which is the electrostatic ground 
state, when the A and B cations are similar in size, while the a-NaFe02 structure is formed 
for equiatomic mixtures of large and small cations (e.g. LiCoC>2 or LiAlO? [43]). The latter 
structure is preferred for systems with very different cation size because its symmetry allows 
for independent anion relaxations around each type of cation. 

Electrostatic interactions can be screened considerably by the high polarizability of the 
oxygen atoms or by the presence of transition metal ions with variable valence. Figure 2 shows 
the change in electron density in LivCo02 when two Li ions are inserted into C0O2. The plane 
shown is defined by the oxygen, cobalt and lithium positions in the unit cell. Although Li 
is ionized to +1, a large screening electron accumulation is present on the oxygen orbitals 
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Figure 2. Electron density change when two Li ions are inserted into C0O2. Yellow means electron 
gain while black indicates a decrease in electron density. 

surrounding the Li ions. This effect can reduce the bare Coulombic interaction between 
neighbouring Li ions by a factor of 40t- As a result Li ordering barely persists above room 
temperature. 

Besides size, electrostatic and covalent effects, electron-lattice coupling and magnetism 
can play a significant role in oxides. Because of the localized nature of electron orbitals 
in many oxides, partially-filled degenerate states can easily lead to spontaneous symmetry 
breaking of the environment around the cation. Peierls or Jahn-Teller distortions are therefore 
quite prevalent in transition metal oxides [44]. For example, in LiMn02, oxygen octahedra 
around Mn3+ are significantly Jahn-Teller distorted in order to break the degeneracy of the 
two eg orbitals (figure 3). The degeneracy is broken by lengthening one of the octahedral axes, 
lowering the energy of the dz2 orbital which lies along this axis. The energy is lowered 
because the eg (dz2) orbital is antibonding and therefore becomes lower in energy with 
increasing ion separation. In LiMn02 the difference between the short and long bonds of 
the MnOß octahedron can be as much as 20%, making effectively for an 'elliptical' Mn ion 
[45]. 

Such local environment changes can make for 'hidden' configurational problems. For 
example, when Li is partially removed from LiMnC^, configurational disorder not only occurs 
on the Li-vacancy sublattice but also on the Mn sublattice due to the creation of Jahn-Teller 
(Mn3+) and non-Jahn-Teller (Mn4+) ions. Such electronically coupled configurational 
problems pose an interesting challenge to ab initio alloy theory. 

Magnetism is expected to be more important in oxides than it is in metals due to the large 
magnetic moments that are often found on transition metal cations in an oxide. In addition, 
the localized nature and valence dependence of the moments can couple them directly to 

t This can be seen from comparing the effective interaction, calculated in [25] with the bare electrostatic potential. 
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Figure 3. The Jahn-Teller distortion of an octahedron around Mn3+ splits the degenerate eE levels. 
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Figure 4. Energy of three different lithium manganese orderings in rocksalts with ferromagnetic 
and antifeiTomagnetic spin polarization. 

ionic configuration changes on other sublattices. Figure 4 shows the relative stability of three 
different orderings of Li and Mn over the octahedral sites of the rocksalt lattice in LiMnC>2 
as calculated with an ultra-soft pseudopotential method [45]. Note that magnetism has a 
substantial effect on the energy differences between these structures. Ferromagnetic and 
antiferromagnetic spin ordering even leads to ä different ground state. Such interplay between 
magnetism and structural stability can be used to tailor the relative stability of these structures 
with compositional changes [46]. 

Magnetism can also cause several metastable configurations to appear for a particular ionic 
arrangement [47]. Figure 5 shows the energy versus volume for a lithiated LiiMniC^ spinel for 
different spin and symmetry states. The lowest energy is obtained for a Jahn-Teller distorted 
structure (triangles in figure 5) in which Mn is high spin (t^eg electronic configuration). 
The Jahn-Teller distortion makes the otherwise cubic spinel unit cell tetragonal and splits 
the eg levels. At significantly lower volume the same structure, but with partially low-spin 
Mn, has another local minimum (diamond symbols). This minimum corresponds to Mn3+ 

in configuration i\ e° with an electron-only moment of 2/iB. Because of the reduced spin 
on the Mn ion, the symmetry of this spinel is cubic. Also shown (circles) is the energy 
versus volume for a spinel with cubic symmetry (thereby not allowing for the Jahn-Teller 
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Figure 5. Energy versus volume for different electronic states of LiMnC^. 

distortion) and high-spin Mn3+. All three structures are local minima in the density functional 
theory equation of state. Care should therefore be exercised to obtain the correct electronic 
and magnetic ground states when calculating energy differences or phase diagrams for these 
materials. To our knowledge, such magnetism-induced metastability has never been observed 
before in density functional theory calculations. 

5. Non-configurational entropy 

While application of lattice model statistical mechanics, such as the cluster variation method 
[48] or Monte Carlo simulation, to the cluster expansion can determine the configurational 
entropy explicitly, the entropy arising from other excitations has to be implicitly included 
in the values of ECIs. These additional entropy contributions make the ECIs temperature 
dependent [35]. In metallic alloys both vibrational [49-51] and electronic entropy [52] 
have been included in this way. Oxides may produce additional sources of entropy which 
cannot easily be dealt with. When identical ions with different valence are present (such as 
Mn3+ and Mn4+ or Cu1+ and Cu2+) a configurational-like electronic entropy term should be 
considered [53,54]. While an ideal-solution term can be easily added to account for the 
configurational disorder of different valence states, problems arise when this distribution 
is coupled to the configurations of ions on another sublattice (e.g. Li vacancy and 
Mn3+/Mn4+ ordering in Li^Mn02). Since the concentration of Mn3+ is equal to the lithium 
concentration, total decoupling of the Mn and Li sublattice would generate an entropy of 
-2kB[x ln*+(l-*) ln(l-x)] (assuming fully disordered states on both sublattices). However, 
localization of the Mn3+ ions near Li (as opposed to vacancies) would strongly reduce this 
entropy, and in the limit of fully-coupled configurational states the entropy would be only 
-kB [x In x + (1 - x) ln(l - x)]. The uncertainty in the configurational entropy associated with 
the electronic coupling between the two sublattices is therefore of the same order of magnitude 



318 GCederetal 

as the total entropy. The localized-charge entropy can further be reduced by delocalization 
(bringing the entropy towards the metallic limit) or by charge ordering (bringing it towards 
zero) [55,56]. Calculation of the electronic entropy between the localized and delocalized 
limit will require the development of electronic structure methods that go beyond the local 
density approximation. 

Besides entropy associated with the 'localization' of electrons, entropy can arise from 
the different orientations of symmetry breaking transitions, such as Jahn-Teller distortions, or 
ordering of the magnetic moments. 

6. The LixCo02 phase diagram: failure of density functional theory around a 
metal-insulator transition 

LixCo02 is an important material for applications in rechargeable lithium batteries as it 
reversibly intercalates lithium ions with little change to the Co02 host framework. In the 
discharge cycle of a Li battery, Li is absorbed by the host material. Upon charging this process 
is reversed. While laboratory experiments have shown reversible lithium intercalation between 
x = 0 and x - 1 on Li.,Co02 [57], cycling in commercial batteries is limited to the range 
0 < x < 0.5. 

Figure 1(c) shows the LiCo02 structure which consists of close-packed oxygen layers 
stacked in ABC sequence with Li and Co occupying alternating planes of octahedral interstices. 
Since the octahedral interstices of an ABC stacked oxygen framework form an fee lattice, a 
one-to-one correspondence exists between the possible Li-Co distributions and the ground 
states of fee lattice models. The specific ordering of LiCo02 is LI, (or CuPt prototype in 
alloys). As Li is extracted from LiCo02, Li-vacancy ordering can occur. Figure 6(a) shows the 
calculated phase diagram for this material as a function of lithium content. An experimental 
compilation of results is shown in figure 6(b). For x > 0.25 the host material shown in 
figure 1(c) is stable. For* < 0.25 minor modifications in the oxygen framework are predicted 
to occur, necessitating the use of cluster expansions on different lattices. One should keep 
in mind that the phase diagram of figure 6(a) indicates the most stable states in the layered 
structures or variants thereof, and it cannot be excluded that other host structures are more 
stable. Finding the most stable host structures among the infinite number of possibilities is 
still an unsolved problem in first-principles materials theory. More details on this specific 
calculation can be found in [25]. In general, there is quite good agreement between the 
calculated and experimental results. The ordered Li-vacancy configuration predicted to 
occur at x — 0.5 is the same as the one put forward on the basis of XRD data [26]. In 
addition, the HI-3 phase, a structure in which Li ions occupy only every other possible 
plane, is consistent with the observed changes in XRD patterns around that composition 
[58]. However, one significant discrepancy exists between the calculated and experimental 
information. Experimentally, two phases with distinct Li composition but identical symmetry 
are predicted to occur between x = 0.75 and x - 0.95. In the calculation no such two-phase 
region can be observed. This failure of ab initio alloy theory to reproduce this phase transition 
is consistent with the recent understanding that it cloaks a metal-insulator transition [25,59]. 
While LiCo02 is a semiconductor, removal of Li introduces localized holes in the Co t2g 

valence band. It is expected that at a critical concentration these holes overlap and the material 
becomes metallic. The view of this transition as a metal-insulator transition has recently been 
reinforced by conductivity and NMR measurements as a function of Li content [59]. Density 
functional theory, which was the basis for the calculated diagram of figure 6(a), cannot be 
expected to capture the subtle energetic and entropic effects associated with such an electronic 
transition. 



First-principles alloy theory in oxides 319 

i—[    i    i    i    i    i    r 
0     0.1     0.2    0.3    0.4   0.5    0.6    0.7    0.8    0.9   1.0 

Li concentration 

(a) 

E 
H 

100 

S       50 

03 (I) 

r~r—i—III    IT 
0.0    0.1     0.2    0.3    0.4   0.5    0.6    0.7    0.8    0.9    1.0 

Li concentration 

(b) 

Figure 6. (a) Calculated Li.rCoC>2 phase diagram, (b) Experimentally compiled Li.rCo02 phase 
diagram. 

The calculated phase diagram in figure 6(a) shows the strong screening effect of the Li-Li 
interaction. The phase diagram is highly asymmetric with respect to lithium concentration. 
This can be understood from the charge compensation mechanism in these structures. The 
electrostatic interaction between the positively charged Li+ ions in LiCoCh is strongly screened 
by the large and polarizable electron density on the oxygen ions. As Li is removed from 
LiCoC>2, charge neutrality requires the removal of electron density from the C0O2 framework. 
Since this electron density is largely taken from the oxygen ions [60,61], Li removal reduces 
the screening power of the oxygens, thereby increasing the effective Li-Li interaction. 

7. Conclusion 

Although alloy theory has been successful in predicting and explaining the phase diagrams 
of binary metals, oxides present a new series of challenges for this field. The strong 
coupling between electronic, magnetic, positional and configurational degrees of freedom 
may necessitate the development of a temperature-dependent electronic theory which can 
describe the continuous transition between the localized and delocalized states that can occur 
in oxides. 
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Abstract. Microstructural issues in alloys such as precipitation have largely been outside 
the realm of first-principles electronic structure calculations due to the length scales 
involved in precipitation microstructure (typically nanometres to micrometres) and the inherent 
thermodynamic/statistical nature of the problem. Here, we show that modern, first-principles total 
energy calculations can be combined with a mixed-space cluster expansion approach (a generalized 
real/reciprocal space Ising model) and Monte Carlo simulations to yield a method capable of 
describing equilibrium coherent precipitate shapes in alloys with system sizes up to 250 000 atoms. 
Both the (anisotropic) interfacial free energies and the coherency strain between precipitate and 
matrix are accounted for in this method as well as the short-range atomic-scale ordering of the 
solid solution. Illustrations of the technique are given for several famous examples of coherent 
precipitation in aluminium alloys: Al-Mg, Al-Cu and Al-Ni. 

1. Introduction 

Understanding the precipitation microstructure and its evolution with heat treatment is 
important when optimizing the hardness or yield strength of many alloy systems. The 
precipitation of solute atoms out of a solid solution increases the hardness of alloys because the 
precipitate and its surrounding strain field interfere with dislocation motion through the crystal: 
the dislocation must either pass through the precipitate and shear it or avoid the precipitate 
by bowing around it. (See, e.g., the review articles [1,2] and references therein.) Coherent 
precipitates are those which possess the same underlying lattice structure as the solid solution 
matrix and all crystallographic planes are perfectly continuous through precipitate and matrix. 
These precipitates often appear at the early stages of precipitation, may produce significant 
strain fields surrounding the precipitate, and are often quite effective at increasing hardness in 
alloys. The size and shape (e.g., plates, spheres, rods) of the precipitate morphology dictates 
the energetic penalty for dislocation motion through or around it, and hence knowledge of the 
precipitate shapes is an important step towards understanding the strengthening mechanism in 
alloys. Therefore, the study of the shape of coherent precipitates has been an active field of 
both theoretical and experimental research [3-11]. 

First-principles calculations have not typically been used to study problems of precipitation 
due to the fact that the precipitate alone is often a few nanometres to a few micrometres in 
size, and hence can be composed of anywhere from hundreds to billions of atoms or more. 
Additionally, the problem of predicting a precipitate shape of solute atoms in a disordered 
solid solution matrix requires that one perform a statistical sampling of the configuration space 
involved. In other words, one might need to evaluate the energy of hundreds of thousands of 
atoms in hundreds of thousands of configurations to accurately account for the thermodynamic 
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nature of this microstructural problem. We show here a method which combines a set of small - 
unit-cell (averaging about five to six atoms per cell), first-principles total energy calculations 
with a generalized Ising-like model to extend the length scales of first-principles calculations to 
that of coherent precipitate microstructure. This generalized Ising-like model, which accounts 
for both the interfacial and strain energies between the precipitate and matrix, is called the 
mixed-space cluster expansion (CE) [12-14]. The CE may be combined with Monte Carlo 
simulations to efficiently sample configuration space and treat the thermodynamic aspects of 
the problem. Examples of this technique are shown for the aluminium alloy systems: Al-Mg, 
Al-Cu and Al-Ni. 

2. Methodology 

The mixed-space cluster expansion method and the construction of the expansion from first- 
principles have previously been described in detail [12-14,18]. We only give the salient points 
here, and for a detailed discussion of the method we refer the interested reader to the above 
references. The mixed-space cluster expansion expression for the formation enthalpy (the 
energy with respect to the compositional average of the alloy constituents, all at zero pressure) 
of any configuration a is given by 

AH (or) = Y,J(k)\S(k, a)\2 + J2 DfJfÜf(a) + * £ A££q
s(*. jr)|S(fc, a)|2. 

k f 4x(-'     x>   k 

(1) 

Jf and J(k) are the Ising-like interaction energies, / is a symmetry-distinct figure comprised 
of several lattice sites, Df is the number of figures per lattice site, and 11/ is a product of the 
variables Si, over all sites of the figure / averaged over all symmetry equivalent figures of 
lattice sites. Each of the TV sites of the lattice (in this paper, fee) is associated with either an A 
atom (St = — 1) or a B atom (5,- = +1). (Note, however, that the atoms are not required to sit at 
the lattice positions, and that atomic relaxation is accurately treated within this expansion [13].) 

The first summation of equation (1) includes all pair figures, summed using the reciprocal- 
space concentration-wave formalism [6,15,16]. J(k) and S(k,a) are the lattice Fourier 
transforms of the real-space pair interactions and spin-occupation variables. The second 
summation of equation (1) includes only non-pair figures, / (e.g., three- and four-body 
interactions). The third summation involves AEcs(k, -0. the coherency strain energy, defined 
as the strain energy of bulk A and B required to maintain coherency along an interface with 
orientation k. In practice, this may be calculated from the energy change when the bulk solids 
A and B are deformed biaxially from their equilibrium cubic lattice constants aA and aB to a 
common lattice constant a±_ in the plane perpendicular to k, and relaxed in the third direction, 

AEcs(£,;0 = min[(l - x)AEc/\ic, aL) + xAEc/'(k, a±)] (2) 

where AE^\k, aß is the energy required to deform A biaxially to a±_ (see, e.g., [17]). 
One should note several points about the calculation of coherency strain and its 

incorporation into the CE. 

(1) Composition-dependent, anisotropic, and anharmonic elastic response are incorporated 
into the calculation of equation (2). 

(2) In terms of superlattice structures, A„Bm. the strain energy of equation (2) corresponds 
to the long-period limit (n,m —> oo), where interfacial energies (which scale with the 
area of the interface) are negligible compared to the strain energy (which scales with the 
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volume of the system). Thus, the coherency strain of equation (2) is formulated in terms 
of the elastic response of the pure constituents, A and B, and this energy has been referred 
to previously as the constituent strain energy [12]. 

(3) For short-period superlattices both interfacial and strain energies can be important: 
Interfacial energies are incorporated into the CE via first-principles calculations of short- 
period superlattice energies, which are used to construct the Ising-like interactions of 
equation (1). The coherency strain energy in (1) must treat both long-period superlattices 
and short-period superlattices (as well as random alloys and other configurations). This 
form is constructed in such a way as to give not only the correct long-period superlattice 
limit (equation (2)), but also the energetics of fully-relaxed short-period superlattices as 
directly calculated from first principles. The construction of the coherency strain has 
recently been discussed in [18]. 

Mixed-space CE Hamiltonians have been constructed for the following fee alloy systems: 
Al-Mg, Al-Cu and Al-Ni. First-principles total energies were computed in all cases using 
fully-relaxed, full-potential, linearized augmented plane wave (LAPW) [19] calculations. Total 
energies of 30^10 ordered compounds for each alloy system were used to fit the values 
of the interaction energies of equation (1), J (k) and //. All compounds were relaxed to 
their energy-minimizing geometry with respect to volume, unit cell vector lengths, and cell- 
internal coordinates; however, vibrational effects were neglected. The ordered compounds 
included short-period superlattices for a variety of orientations (e.g., [100], [111], [110], etc), 
special quasi-random structures (ordered structures which mimic the random alloy), and other 
structures. LAPW epitaxial energies of the alloy constituents for five orientations ([100], 
[111], [110], [201], and [311]) were used to compute AE^?s(k,x). The mixed-space CE 
Hamiltonian of equation (1) thus contains both interfacial and strain energies, determined 
from a first-principles quantum-mechanical approach. 

To compute thermodynamic properties and efficiently search configuration space for 
equilibrium precipitate shapes, we used the mixed-space CE Hamiltonian in a dual 
real/reciprocal space Monte Carlo code in the canonical ensemble (fixed composition), as 
described in [20]. System sizes of N = 203-643 = 8000-262 144 sites were used with 
100-1000 Monte Carlo steps (per site) used for thermal equilibration and statistical averages. 
We used periodic boundary conditions, but for the precipitation calculations, atoms at the 
boundary of the Monte Carlo cell were fixed (i.e. they were never involved in any exchanges) 
to prohibit precipitates from 'joining' with their periodically repeated images. For several 
different CE Hamiltonians, tests were performed by varying the size of the simulation cell while 
maintaining a constant number of solute atoms. No qualitative differences in precipitate shapes 
were found, thus suggesting that our simulation cells are large enough to deduce equilibrium 
precipitate shapes. One should note that the method described here is a strictly thermodynamic 
approach, with the constraint that the system is required to remain coherent (i.e. fee based). 
Kinetic aspects of this problem, such as coarsening, nucleation, quenched-in vacancies, etc, 
are not directly simulated here. 

3. Results 

3.1. Formation enthalpies 

Figure 1 shows the LAPW-calculated formation enthalpies of 30-40 fec-based ordered 
compounds for the Al-Mg, Al-Cu and Al-Ni systems. These energies were used to fit the Ising- 
like interactions of equation (1). Also shown is the predicted Al-rich coherent ground state 
for each system. These ground states were predicted by performing Monte Carlo simulated 
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Figure 1. First-principles (LAPW) calculated formation enthalpies for ordered compounds in the 
Al-Mg, Al-Cu and Al-Ni systems, relative to the fee constituents. For each system, 30^10 ordered 
compound energies were used to fit the Ising-like interactions of the cluster expansion. Tie-lines arc 
drawn to the Al-rich predicted coherent (fee-based) ground states which are the phases predicted 
to appear in the later stages of the coherent precipitation sequences of these alloys. (In Al-Ni, B2 
is listed as a coherent fee-based phase because the fee-based L\Q AINi compound relaxes directly 
(without an energy barrier) into the B2 structure.) 

annealing calculations of the mixed-space cluster expansions, starting from high temperatures 
and cooling down slowly to find the lowest-energy state. Thus, these are not merely the lowest- 
energy structures out of the 30-40 calculated, but actually involve an efficient search of the 
configurational space of 2N possibilities, where N can be as large as 262 144. From figure 1, 
we note several points. 
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Figure 2. The predicted AI3C11 coherent ground state, referred to as 'Z3'. This compound is an 
(001) superlattice with AI3CU1 stacking. 

(This figure is in colour only in the electronic version, see www. iop. org) 

(i) All three systems possess ordered compounds with negative formation enthalpies, and 
therefore possess stable ordered compounds. The Al-Mg system, however, has a variety 
of compounds with both positive and negative AH. 

(ii) Formation energies generally increase in magnitude as one goes from Al-Mg to Al-Cu 
to Al-Ni. Interestingly, the general trend of observed solubilities of these three elements 
in Al also follows this order: Mg has the highest solubility in Al (~19%), followed by 
Cu (~2.5%) and then Ni (~0.02%). (The formation enthalpies in Al-Mg are extremely 
small; hence a very fine fc-point mesh was necessary to obtain numerically converged 
results in this system.) 

(iii) For the Al-Mg system, the Al-rich coherent ground state is predicted to be A^Mg (L12). 
The LI2 structure is a ground state of the nearest-neighbour (ordering-type) Ising model, 
but the structure is cubic and possesses no crystallographic degrees of freedom to provide 
strain relief. The fact that it is nevertheless the lowest energy state suggests that chemical 
ordering of Al and Mg (as opposed to atomic relaxation) is the dominant mechanism for 
compound formation in Al-Mg. The calculated lattice mismatch of fee Al and fee Mg 
is 11%, however, and so atomic relaxation also plays an important (though somewhat 
smaller) role. 

(iv) In contrast, the Al-Cu and Al-Ni system both show very low energy (OOl)-type 
superlattices for Al-rich compositions. For Al-Cu, the predicted coherent ground state is 
an AI3Q1 compound ('Z3') which is a stacking of AI3CU1 planes along (001), shown in 
figure 2. For Al-Ni, the ground state is the familiar AINi (B2) compound which is a bec 
stacking of AliNii planes along (001). Although the B2 structure is a bec superlattice, 
we have listed it as a coherent fec-based phase because the fec-based L lo AINi compound 
(AliNil fee stacking along (001)) relaxes directly (without an energy barrier) into the 
B2 structure. This Llo —> B2 relaxation tendency has previously been shown for FeAl, 
Co Al, and NiAl [21]. 

(v) Calculations of a 16-atom A^Mg special quasi-random structure (SQS) gives a direct 
estimate of the enthalpy of mixing of the disordered solid solution (i.e. directly from 
first-principles, with no need for a cluster expansion). Relative to fee Al and hep Mg, the 
formation enthalpy of the Al3Mg SQS is +1.2 kJ mol-1, which is in good agreement with 
measured and assessed values of the mixing enthalpy [22] which are approximately +1 to 
+ 1.5 kJ mol"1 for a 20% Mg alloy. 
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Figure 3. Calculated (100), (111), and (110) coherency strains for Al-Mg. Al-Cu and Al-Ni. 

3.2. Coherency strain 

Figure 3 shows the calculated coherency strain for the three alloy systems. For visual clarity, 
only the calculated results for the (100), (111), and (110) directions are shown. Several points 
concerning the strain of these systems can be seen from the comparisons in figure 3. 

(i) The relative size of the coherency strain in these three systems follows the magnitudes of 
AH values in figure 1: Al-Mg has the smallest strain energy, followed by Al-Cu, and 
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then Al-Ni. The fact that the strain in Al-Cu is smaller than in Al-Ni is simply due to 
the size mismatch of Al-Cu being smaller than that of Al-Ni. The fact that both Al-Cu 
and Al-Ni have larger strain than Al-Mg is a reflection of two facts: (a) Mg is elastically 
much softer than Cu or Ni, and (b) Cu and Ni are smaller than Al whereas Mg is larger. 
For Al-Cu and Al-Ni, one is either expanding a hard material (Cu and Ni) or compressing 
a soft one (Al). Compressing Al (in Al-Cu and Al-Ni) is energetically much more costly 
than expanding it (in Al-Mg) due to the anharmonic equation of state, leading to larger 
strain energies in alloys of Al with a smaller metal. 

(ii) The strain of Al-Mg is nearly isotropic compared to that of Al-Cu or Al-Ni. Additionally, 
although Mg is stable in the hep structure, we find that it is metastable in the fee structure 
(i.e. all the epitaxial distortions considered raise the energy of fee Mg). This is interesting 
because a contrasting case has recently been found for another hep metal: Zn is unstable in 
the fee structure [23], with this instability strongly influencing properties of Al-Zn alloys. 

(iii) For Al-rich compositions, Al-Cu and Al-Ni are extremely soft for (100) deformations 
due to elastic response of Cu and Ni [17]. This elastic softness causes (001) superlat- 
tices to be low in energy in these systems (and ultimately gives rise to the (001) planar 
Guinier-Preston zones in Al-Cu). 

(iv) In all systems considered, anharmonic elastic effects are important: harmonic continuum 
elasticity dictates that the energy of distortions along (110) must always be intermediate 
between that of (100) and (111). In each of the three cases in figure 3, the energy of (110) 
becomes the hardest elastic direction for Al-rich compositions, a clear manifestation of 
anharmonic elasticity (which is inherently included in the first-principles calculations). 

(v) Although Al and Au have similar sizes, they have different elastic properties. Nevertheless, 
the calculated coherency strains of Al-Cu and Al-Ni are similar to those of Au-Cu and 
Au-Ni, respectively [14]. This fact demonstrates that strain in these alloys (particularly 
for Al-rich compositions) is dominated by the elastic response of pure Cu and pure Ni. 

3.3. Precipitate shapes 

By mapping the first-principles results of figures 1 and 3 onto the mixed-space cluster expansion 
of equation (1) and using this expansion in Monte Carlo simulations, one can study coherent 
alloy precipitate shapes. Before presenting first-principle results, we start with a 'prototype' 
calculation (figure 4), and simply choose the terms of equation (1) to reveal generic behaviour: 
the first term in equation (1) is modelled via a clustering nearest-neighbour pair interaction 
JNN < 0. Multibody terms (second term of equation (1)) are neglected. Coherency strain is 
modelled by a low-order expansion (K0 and KA) of Kubic harmonics, similar in functional 
form to that of continuum harmonic elasticity [17]. A negative value of the elastic anisotropy, 
A = C44 — (Cu — Cn)/2, is used, leading to elastically soft (111) directions. (Prototype 
calculations were also performed with positive values of A yielding similar results for an 
elastically soft (100) direction.) Each equilibrium shape is the result of a simulation begun at 
high temperature and slowly cooled down through the miscibility gap to low temperatures. In 
the limit of pair energy only (i.e. zero strain energy, left-hand side of figure 4), the precipitation 
problem has a solution given by the Wulff-shape construction. The Wulff-shape for a simple 
nearest-neighbour pair interaction (with the T — 0 interfacial energies as constraints) is the 
cuboctohedron, and our Monte Carlo simulations give the atomistic analogue of this solution. 
However, as coherency strain is slowly 'turned on', the facets of the precipitate along the 
elastically soft directions grow, the precipitate elongates, and eventually when the strain 
energy dominates, the equilibrium precipitate shape becomes planar [6] with the normal to 
the precipitate plane being the soft elastic direction.   This planar shape of the strain-only 
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precipitation problem can be seen from the form of the coherency strain in equation (1), 
where a planar precipitate with normal G is composed solely of composition waves along the 
direction G. Thus, a planar precipitate with normal along the elastically softest direction is 
the lowest-energy shape [6]. 

We next turn to the calculation of precipitate shapes in actual alloy systems with the 
terms in equation (1) given by the first-principles energetics of figures 1 and 3. We show in 
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Figure 4. Calculated equilibrium precipitate shapes with both strain and interfacial energy 
contributions. Interfacial energy is included via a (clustering) nearest-neighbour pair interaction in 
equation (1) and strain is included via harmonic continuum elasticity in which the (111) direction 
is the soft elastic direction. Simulations were performed for a 27 OOO-atom cell with 1350 minority 
atoms (only the minority atoms are shown, colour-coded by the number of the 12 nearest neighbours 
which are also minority atoms). Each equilibrium shape is the result of a Monte Carlo simulation 
begun at high temperature and slowly cooled down through the miscibility gap to low temperatures. 
As strain becomes progressively larger, one can see the (111) facets (red) become predominant. 

Figure 5. Predicted coherent precipitate shapes for Alo.98Mg0 02. Shown are results of a simulation 
with 64000 atoms and 2% Mg for various temperatures: (a) T = l.OSTcoh, above the coherent 
phase boundary (in the solid solution), (b) T = 0.95Tc„i„ below the coherent phase boundary 
(where the precipitate forms), and (c) a low temperature where very few Monte Carlo swaps are 
accepted. In each case, only a portion of the Monte Carlo cell is shown, cut along the (001) 
direction. Al atoms are yellow and Mg atoms are blue. 

Figure 6. Predicted coherent precipitate shapes for Al-Cu. Shown are results of three simulations 
with progressively larger precipitate sizes with ~1% Cu: (a) 303 = 27 000 total atoms (270 Cu 
atoms), (b) 563 = 175 616 total atoms (1404 Cu atoms), and (c) 643 = 262 144 total atoms 
(2898 Cu atoms). Al atoms are yellow and Cu atoms are red. In each case, only a portion of the 
Monte Carlo cell is shown, cut along the (001) direction. The equilibrium precipitate shapes show 
the evolution with size of the precipitates from Cu monolayers (GP1) to a Cu/Al/Al/Al/Cu structure 
(GP2), based on the 'Z3' AI3CU ground state of figure 2. 

figure 5 the thermal evolution of the equilibrium coherent precipitate shapes for the Al-Mg 
system. For high temperature (above the coherent phase boundary temperature, Tco^), the 
solid solution is stable, as one can see from the disordered arrangement of Al and Mg atoms in 
figure 5(a). Although this is simply a 'snapshot' of the actual simulation (which is thermally 
averaged), it shows the qualitative behaviour of the solid solution. One can see some aspects of 
the short-range order (SRO) in Al-Mg from this figure: nearest-neighbour Mg-Mg pairs are 
absent, and hence Al-Mg pairs are enhanced relative to random statistics, leading to a negative 
Warren-Cowley SRO parameter for the nearest-neighbour shell. On the other hand, several 
next-nearest-neighbour Mg-Mg pairs are seen in figure 5(a), showing that the SRO parameter 
for this shell is positive. (For a calculation of a 15% Mg alloy at 350 K, the SRO parameters 
for the first two shells are a\ = —0.05 and a2 — +0.08.) As one lowers the temperature below 
^coh, Mg precipitates out of the solid solution as the Al3Mg (Ll2) phase shown in figure 1. 
In the Al3Mg ordered phase, Mg atoms sit at the corners of the conventional fee cube and Al 
atoms sit in the faces. Thus, this structure has no Mg-Mg nearest neighbours, but every Mg 
atom is surrounded completely by Mg atoms on the next-nearest-neighbour shell, leading to 
d\ = —0.333 and «2 = +1.00 for the completely ordered structure. Thus, the SRO in the 
high-temperature solid solution represents small fluctuations of the low-temperature coherent 
phase. As one can see from figure 5, the precipitate forms a perfectly ordered LI2 structure, 
with no 'mistakes' in the structure (i.e. no Mg-Mg nearest neighbours, and within the interior 
of the precipitate, no Al-Mg next-nearest-neighbour bonds)f. The shape of this precipitate 
is roughly spherical. The observed precipitation sequence in Al-Mg goes through an initial 
period of coherent Guinier-Preston zones followed by the formation of a coherent ordered 

t One might expect the A^Mg precipitate to be partially ordered. The perfectly ordered structure seen in the 
simulations is due to the following. The composition was kept quite dilute (2% Mg) to avoid having too large 
a precipitate which would interact with its periodically repeated images. Because of the dilute composition, the 
coherent phase boundary is quite low in temperature, and thus the AlßMg ordered compound at this temperature is 
quite well ordered. At compositions commonly used in age hardening experiments in Al-Mg (10-15% Mg), the 
coherent phase boundary is much higher, and the observed A^Mg precipitate is more likely to be partially ordered. 
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phase (usually labelled ß"), followed by subsequent semicoherent and incoherent precipitates 
[24]. Although there was initially some debate about the structure of ß", it is now generally 
accepted that it has an Ll2 structure and forms roughly spherical precipitates [25,26]. Our 
predicted precipitate shapes support this interpretation of both the structure (Al3Mg LI2) 
and shape (roughly spherical) for the ß" phase in Al-Mg. As one continues to lower the 
temperature (figure 5), the precipitate begins to show some (001) facets corresponding to both 
the slightly lower strain and interfacial energies in this orientation. Calculations of LWfcc 
interfacial energies [27] have shown that even a strong anisotropy which exists in T = 0 
interfacial energies can be eliminated at very modest temperatures where the interfacial free 
energies become isotropic. This temperature-induced isotropy of the interfacial free energies 
is a possible reason for the more spherical form of the precipitates at higher temperatures, 
although this hypothesis has not been investigated in detail. 

Next, we turn to the coherent precipitates in Al-Cu. Al-Cu is possibly the most famous 
example of coherent precipitation, in which Cu atoms precipitate out of the solid solution 
as coherent plates along (001). Two types of these plates, or Guinier-Preston (GP) zones, 
have been proposed, although there has been significant controversy concerning the nature and 
ordering of these GP zones [7]. The first-principles mixed-space cluster expansion approach 
described here has recently been applied to the problem of GP zone formation in Al-Cu [28], 
and figure 6 shows the calculated zone shapes. 'Slices' of three Monte Carlo simulation 
cells are shown for ~1% Cu with progressively larger cell sizes. (The largest of these cells 
contained 262 144 atoms.) For small precipitate sizes, we find disc-shaped Cu monolayers 
(figure 6(a)), while for larger precipitate sizes, the equilibrium precipitate shape is two Cu 
monolayers separated by three Al layers (figure 6(c)). Remarkably, these two theoretically- 
predicted structures correspond to the 'traditional model' of GP1 and GP2 zones, respectively. 
The stacking sequence we have found for the GP2 structure has previously been shown to 
result from minimization of elastic energy alone [4]. We have recently [28] explained this size- 
dependent transition in the precipitate shape as a competition between the interfacial energy 
penalty around the perimeter of the disc (favouring GP1 at small sizes) and the thermodynamic 
driving force for the Al3Cu coherent ground state of figure 2 (favouring GP2 at large sizes). 
This transition is in excellent agreement with HREM measurements of Sato and Takahashi [29] 
who aged Al-1.7 at% Cu at 423 K and observed single-layer GP 1 zones for sizes up to -150 Ä 
(but not larger) and GP2 zones (with structure corresponding to the 'traditional model') with 
sizes down to ~100 Ä (but not smaller). Thus, as observed in age hardening experiments, we 
predict that GP2 zones will form only for longer ageing times or higher temperatures (where 
kinetics will lead to larger precipitate sizes). 

4. Conclusions 

We have shown that modern, first-principles total energy calculations can be combined with 
a mixed-space cluster expansion approach (a generalized real/reciprocal space Ising model), 
and Monte Carlo simulations to yield a method capable of describing equilibrium coherent 
precipitate shapes in alloys with system sizes up to 250000 atoms. Both the interfacial free 
energies and the coherency strain between precipitate and matrix are accounted for in this 
method, as well as the short-range atomic-scale ordering of the solid solution. 

First-principles calculations of ordered compound formation enthalpies and coherency 
strain energies (the necessary ingredients for constructing the cluster expansions) were shown 
for Al-Mg, Al-Cu and Al-Ni. Both the formation enthalpies and coherency strains increase 
in magnitude as one goes from Al-Mg to Al-Cu to Al-Ni. Additionally, although Al-Cu 
and Al-Ni showed elastically soft (001) directions for Al-rich compositions (due to the elastic 
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response of pure Cu and pure Ni), Al-Mg is much more isotropic. The coherent ground states 
for Al-rich compositions were predicted to be Al3Mg (Ll2), Al3Cu ('Z3'), and AINi (52), 
with the former two observed as ß" and 'GP2' in precipitation experiments. 

We have shown illustrations of generic precipitation behaviour of 'prototype' systems, 
which demonstrate that compact precipitate shapes are favoured for systems which are 
dominated by interfacial energies, whereas planar shapes are favoured for strain-dominated 
cases. First-principles calculations of the equilibrium precipitate shapes were presented for 
Al-Mg and Al-Cu. The calculated Al-Mg equilibrium coherent precipitate shapes were 
roughly spherical Al3Mg (Ll2) particles, in agreement with observations of ß" precipitates. 
In Al-Cu, platelets along (001) were found, with a size-dependent transition between isolated 
monolayers and two Cu layers separated by three Al layers, corresponding to the traditional 
model of GP1/GP2 structures. 
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Abstract. We have performed calculations of Sn deposition on Cu(l 11) and Cu(100) surfaces. 
The atomic interactions are described by modified embedded atom method (MEAM) potentials. 
This is a modification of the embedded atom method (EAM) to include higher moments in the 
electron density. We find that at low coverages Sn deposited on Cu(lll) leads to the formation 
of a two-dimensional (2D) alloy phase with a p(V3 x V3)-R 30° structure which is stable up to 
temperatures of 1200 K. For deposition of Sn on Cu(100), a coverage of one-quarter of a monolayer 
results in the formation of a stable 2D alloy phase with a p(2 x 2) structure. These results are in 
agreement with ion-scattering experiments. It is found that on both Cu(100) and Cu(l 11) surfaces, 
the resulting alloy phases are rippled with the Sn atoms displaced outward from the surfaces. 

1. Introduction 

Experimental studies of ultrathin Sn films evaporated onto Cu substrates show that when the 
overlay er is annealed, the Sn atoms incorporate into the substrate surface instead of forming an 
overlayer [1,2]. This is expected due to the the high solubility of Sn in Cu. A more unexpected 
result is that for both low-index surfaces, (100) and (111), the incorporation of the Sn atoms 
lead to the formation of truely two-dimensional (2D) alloy phases for Sn coverages of one-third 
of a monolayer for Sn/Cu( 111) [ 1 ] and one-quarter of a monolayer for Sn/Cu( 100) structure [2]. 

The deposition and subsequent annealing of ultrathin layers of Sn on a Cu(l 11) substrate 
have resulted in the formation of a stable 2D Cu-Sn alloy phase with a p(^ x \/3)-R 30° 
structure that is a single monolayer thick [1]. This ordered structure is stable against changes 
in coverage and temperature up to about 900 K. Above this temperature, Overbury and Ku 
[1] report a reduction of Sn at the surface due to diffusion of Sn into the bulk, whereas the 
p(V3 x \/3)-R 30° reconstruction is maintained. The 2D alloy structure is characterized by 
a surface ripple with the Sn atoms located above the Cu atoms by about 0.39 A [1]. This 
same structure has been observed in experiments of Sn segregation to a Cu(l 11) surface [3-6]. 
Erlewein and Hofmann using a single crystal of Cu(lll) doped with 0-0.5% Sn, found that 
the maximum surface concentration is 33% and corresponds to a p(\/3 x V3)-R 30° ordered 
structure [3]. Above 1000 K, a decrease in Sn coverage was observed. Similar results were 
obtained by Viljoen and du Plessis [4-6] for surface segregation of Sn in a single crystal Cu 
(111) in the temperature range 660-840 K. Investigations of segregation using Auger electron 
spectroscopy (AES) and low-energy electron diffraction (LEED) patterns showed the same 
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overlayer structure obtained by Erlewein and Hoffmann [3], namely a p(\/3 x \/3)-R 30° 
structure at a maximum concentration of 33%. These findings were more recently confirmed 
by Contini et al [7], on studying the segregation of Sn in Cu(l 11) by AES and reflection 
high-energy electron diffraction (RHEED). Using scanning tunnelling microscopy (STM) they 
identified a single-layer Sno.33Cuo.66 alloy phase with ap(\/3 x >/3)-R 30° reconstruction. They 
also reported a decrease in the Sn concentration at the surface when the temperature is raised 
above 1100 K. However, no rippling effect was observed. The lack of rippling was attributed 
to the reduction of surface strain by the existence of surface defects and steps. In short, the 
ordered p(V3 x V3)-R 30° Cu-Sn alloy structure observed on the (111) surface is obtained 
either via deposition of Sn on Cu or migration of Sn to the surface from a bulk alloy. 

Experimental results of deposition of Sn on Cu(100) are less clear in regard to the resulting 
surface structure(s) than those for the Sn/Cu( 111) system. Low-temperature deposition studies 
of thin films of Sn on Cu(100) using a combination of Rutherford backscattering/channelling 
(RBS), LEED and AES found evidence of formation of a commensurable 2D phase with 
a p(2 x 2) structure [2]. This phase was reported to be strongly dependent on annealing 
temperature and Sn concentration [2,8]. Equilibrium surface segregation studies of Sn to 
the low-index surfaces of Cu(100) single crystals by means of AES and LEED, showed the 
formation of ap(2 x 2) ordered structure at the maximum Sn surface concentration of 25% [3,5]. 
This structure appears to be more sensitive to temperature changes, with the Cu composition 
of the alloy phase increasing with temperature. 

We carried out computer simulations using modified embedded atom method (MEAM) 
potentials [9,10] which support the results of the experimental studies of the Cu(l 11) and 
Cu(100) surfaces. This work was motivated by a previous work on the initial stages of Cu/Sn 
alloy formation [11]. We will present results of calculations of surface segregation energies 
of Sn to the (111) and (100) surfaces of Cu that agree well with experimental results. The 
comparison of the energetics of the Sn atoms on the surface with the energetics of the Sn atoms 
incorporated into the surface layer demonstrates that the formation of an ordered surface layer 
is favoured at submonolayer coverages in both the (100) and (111) surfaces of Cu. The stability 
and concentration changes with temperature were investigated with molecular dynamics (MD) 
simulations at various temperatures. It was found that both surfaces are rippled with the Sn 
atoms displaced outward from the surfaces at low temperatures. At elevated temperatures 
(above 800 K), Cu atoms from layers below the surface migrate to the topmost layer in the 
Sn/Cu(lll) system. This is also consistent with experimental observations of the reduction 
of the Sn concentration at the surface with temperature. In the next section, we discuss the 
methodology and geometries of the systems employed in the simulations. This will be followed 
by our main results and concluding remarks. 

2. Potentials 

In this work the Sn-Sn, Cu-Sn and Sn-Sn interactions are described by the MEAM potentials 
[9,10]. The MEAM formalism is a modification of the well known embedded atom method 
(EAM) [12,13] that reproduces the physical properties of many metals quite well. In MEAM, 
as in the EAM, the energy of an atom consists of two parts: the energy to embed an atom in 
the background electron density coming from the rest of the atoms and a classical pairwise 
interaction. In the EAM, the background electron density is given as a linear superposition 
of spherically-symmetric contributions from all of the other atoms, while in the MEAM it is 
augmented to include angularly-dependent terms, using a multipole expansion. This expansion 
of the electron density has been shown to be equivalent to an angular dependence in the bonding 
[10]. The MEAM has been used to successfully reproduce the mechanical and thermodynamic 
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properties of a, ß and liquid Sn [14]. The Sn-Sn interaction parameters were chosen from [14], 
while the Cu-Cu and Cu-Sn parameters were those published in [11,15]. Angular screening 
was implemented using the method detailed in [16] with some modifications as outlined in 
[15]. 

A detailed discussion of the potential has been fully given in [10,16] and we only briefly 
review the method here. The general energy expression is written as 

(1) 

where 0(r,-7-) is a pair potential and r,; the distance between atoms i and j. The embedding 
function F{p) is taken as F(p) = AEcp In (p). A is an adjustable parameter, Ec is the 
cohesive energy and p is the background electron density. Unlike EAM, where the electron 
density is assumed to be spherically symmetric, MEAM assumes that the background electron 
density at a specific site p,-, is a function of angle-dependent 'partial electron densities' p(Ä): 

pr=x>r (2) 
r -|2 

[«>, 
(Dn2 =E x>; a(Drff 

[A(2)I2 = E[EA 
a(2)rar/i 

aß   L ;# 7^' 

a(2) 

[pP]2 = E E^^W 
o^y L ./'#' 

(3) 

(4) 

(5) 

where x" = r"/r^ (a = x, y, z). The p(
a(Ä) represent the atomic electron densities with decay 

constants ßw and are of the form 

pf} (r) = P,° exp[-/Jw (r/r0 - 1)] (6) 

where h = 0, 1, 2 and 3 and r0 is the equilibrium nearest distance in the reference lattice for 
Cu and Sn. 

The angular dependence is captured by a single scalar T: 
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(A) where p-    is the spherically-symmetric electron density defined above and t^  are weights 
depending on the atomic environment: 
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The mixed pair potential 0cu-sn is derived using the Ll2 Cu3Sn reference state [16] 
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where 

PCU= 1^  (I2) 

PSn = ^- (13) 
Psn 

In (11) Eu is the universal equation of state [17] for the Cu3Sn intermetallic and </>QI-CU is the 
Cu pair potential. The parameters are given in table 1. 

Table 1. The MEAM parameters of copper [15], copper-tin [15] and tin [14]. Ec is the cohesive 
energy, I-Q is the nearest-neighbour distance and a' = 9fi/?/Ec, where B is the bulk modulus and 
Q is the atomic volume of the reference structure (fee for Cu and Sn and L1i CujSn for the alloy). 

Ec ro 
Composition (eV) A (A) a ßW) ßi\) ß(2) ßO) ,(D ,(2) ,m A) 

Cu 3.62 1.07 2.50 5.106 3.62 2.2 6.0 2.2 3.14 2.49 2.95 1.0 
Sn 3.08 1.0 3.44 6.20 6.2 6.0 6.0 6.0 4.5 6.5 -0.183 1.0 
Cu3Sn 3.5 — 2.68 5.38 

The MEAM incorporates a many-body screening function [16], so that the potential is 
short ranged for close-packed structures such as fee and long ranged in open structures such 
as at a free surface. The physical justification for this screening is that if an atom j is between 
two atoms i and k it is able to screen the interaction between the / and k atoms, while if 
the atom j is not between the atoms / and k, the interaction is unscreened. The amount of 
screening is dependent upon the relative geometry, not just the distance between atoms / and k. 
The many-body screening is implemented through the use of a screening parameter C which 
determines the extent of screening. An atom j with C > Cmax does not screen atoms / and k, 
while an atom with C < Cmm totally screens atoms / and k. 

In our system the angular screening was implemented using the method described in [16]. 
Values of Cm\n and Cmax are given in table 2. 

Table 2. Values of the screening parameters, Cjß. Note that 1 refers to Cu atoms and 2 refers to 
Sn atoms. 

'7* 

111 112 212 121 221 222 

(-max 

(-min 

2.8 
2.0 

2.8 
0.8 

2.8 
0.8 

2.8 
0.8 

2.8 
0.8 

2.8 
0.8 

For the Cu-Sn interactions, we modified the parameter Cm\„ from those used in [15] in 
order to optimize quantities such as the vacancy migration energy, vacancy formation energy 
and the activation energy of Sn in Cu and Cu in Sn. These quantities are crucial to alloy 
formation. The details of these calculations are given in [11]. 

3. Methodology 

The calculations employed slab geometries with two non-interacting free surfaces in the Z 
direction. Periodic boundary conditions were imposed in the directions in the plane of the 
free surfaces (X and Y).   The number of atoms in the computational cell depends on the 
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surface geometry: the (111) simulations employed 1440 atoms with 90 atoms per layer. The 
(100) surface simulations comprised up to 6200 atoms with 200 atoms per layer. These values 
correspond to slabs with surfaces of 127 Ä2 for the (111) and 326 Ä2 for the (100) surface. 

The equilibrated starting configurations were obtained employing Monte Carlo (MC) 
simulations at a temperature of 100 K. The simulations were performed with a fixed number 
of atoms and a fixed coverage (fixed number of Sn atoms). In addition to incorporating spatial 
displacements that accommodate strain effects, the MC simulations allow Cu and Sn atoms to 
exchange chemical identities while maintaining the total number of each chemical species to 
be fixed. 

At low coverages and for both Sn/Cu(l 11) and Sn/Cu(100), the Sn atoms incorporate into 
the topmost layer rather than migrating into the bulk or remaining on the surface. At coverages 
of 0.33 for Sn/Cu(l 11) and 0.25 for Sn/Cu(100), the incorporation of Sn atoms into the topmost 
layer results in the formation of well ordered 2D Sn-Cu structures. 

The stability and dynamics of the equilibrated structures resulting from the MC simulations 
were investigated employing molecular dynamics (MD) simulations. First a representative 
total energy was obtained by using calculations with a fixed number of atoms, volume and 
temperature. These calculations were followed by similar calculations with a fixed number 
of atoms, volume and energy. The configurations were annealed and equilibrated at various 
temperatures in the range of 300-1250 K for times in the range of 10-160 ps. We monitored 
the dynamical evolution and structure of the overlayer by looking at the radial distribution 
function (RDF), atomic trajectories and atomic density profiles. 

4. Results 

During the initial stages of deposition, one can examine the sample to determine whether the Sn 
atoms will: form a top layer on the Cu substrate, create a surface alloy phase by incorporation 
in the surface layer, mix with the Cu atoms within the topmost layers to create a bulk alloy 
or diffuse into the bulk. Some of these issues have been addressed here by: (a) calculating 
the segregation energies of Sn to the Cu(lll) and Cu(100) surfaces and (b) evaluating the 
energy difference between placing a single Sn atom on the (100) or (111) surfaces of Cu or 
incorporating it into the surface layer substitionally with a Cu atom, which is then exchanged 
with the Sn atom and placed on the surface. From the latter type of calculations, we find 
that the incorporation of the Sn into the surface layer is favoured by 0.546 eV for the Cu(100) 
surface and by 0.424 eV for the Cu(l 11) surface. This means that for these low-index surfaces, 
the energetics favour incorporation of deposited Sn into the surface layer. 

We also computed the segregation energies in the dilute limit. By definition, the 
segregation energy is obtained by calculating the total energy of the slab with a single solute 
atom for different atomic planes near the surface relative to the energy of placing that atom 
in the bulk. The results for the (100) and (111) low-index surfaces are presented in table 3. 
These results indicate that there is a strong tendency for the Sn impurities to bind to the surface 
layer of Cu(100) (0.823 eV) and Cu(lll) (0.407 eV). Recent experimental values estimate 
the segregation energies to be 0.715 eV and 0.736 eV for Cu(100) and Cu(l 11), respectively 
[5]. Even though the experimental values represent averages over a range of temperatures and 
concentrations, the agreement with our calculated values is reasonably good. 

The MC simulations predict that at 100 K and for low coverages, the Sn atoms are almost 
entirely incorporated in the topmost surface plane for both the (100) and (111) surfaces. For 
a coverage of one-third of a monolayer, a 2D alloy phase is formed on the Cu(lll) surface 
with a p(\/3 x V3)-R 30° structure. This structure is in agreement with both deposition [1] 
and segregation experiments [3-6].  On the (100) surface and for coverages of one-quarter 
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In 

Table 3. Calculated segregation energies Q,, in electronvolts, of a single Sn impurity (dilute limit) 
to the f'th surface layer in a Cu slab at T = 0 K. The experimental values are from [5]. 

System 04 Experimental value 

Sn/Cu(lll)   -0.41   -0.24   -0.36   -0.01   -0.736 
Sn/Cu(100)   -0.82   -0.26   -0.55   -0.02   -0.715 
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Figure 1. Sn/Cu(l 11) system. The 2D surface alloy structure p(V3 x V3)-R 30° on Cu(l 11) at 
506 K. The red circles are Sn atoms and the green circles are Cu atoms, (a) Top view and (b) side 
view showing the first three layers. 

of a monolayer, the most stable phase is also a 2D alloy phase with the p(2 x 2) structure. 
This structure is also seen at 25% coverage in deposition [2] and segregation experiments 
[3,5]. 

The stability and dynamical evolution of these structures were investigated employing 
MD simulations over a range of temperatures. Figure 1 shows top and side views of the 
p(\/3 x V3)-R 30° ordered structure found on the Cu( 111) surface. The atomic arrangement 
corresponds to a time snapshot at a temperature of 500 K. The 2D surface alloy is rippled, with 
the Sn atoms located 0.45-0.48 Ä above the Cu atoms. This value is in excellent agreement 
with the value of 0.39 Ä obtained from ion-scattering measurements [1]. Recent STM images 
failed to show this rippling, but this was perhaps due to the relief of the surface strain by the 
existence of surface steps [7]. 

Figure 2 shows the atomic density profile near the surface for the structure shown in 
figure 1 at a temperature of 508 K. The plotted densities represent averages over 20 ps. At 
temperatures above 508 K a small number of Cu atoms diffuse above the Sn atoms (0.8 A). 
The structure remains stable up to a temperature of 900 K. The stability is confirmed through 
the calculation of the 2D RDF of the surface layer at 508 K (figure 3) and at 900 K. In both 
cases the first-, second- and third-neighbour distances between the Sn atoms are approximately 
4.3, 7.6 and 8.8 Ä, which are in the ratio of 1:1.7:2.0 and agree well with what is expected 
of a 2D hexagonal structure with six-fold symmetry. The first-, second- and third-neighbour 
distances between the Cu atoms in the surface layer are in the ratio of 1:1.8:2.0, which also 
corresponds to a 2D hexagonal structure. Figure 3 also shows the 2D RDF of the topmost layer 
of Cu( 111) which keeps its six-fold symmetry characteristic of the Cu( 111) structure, without 
any perturbation in its structure due to the presence of the 2D alloy. 
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Figure 2. Atomic density profile for the Sn/Cu(lll) 
system shown in figure 1 as a function of the distance 
from the centre of the slab. The profiles represent a 
time average over 20 ps. The temperature is 508 K. The 
rippling of Sn atoms above the Cu atoms is clearly visible. 

Figure 3. Sn/Cu(l 11) system. The 2D RDF for the 
structure shown in figure 1 at T = 508 K. The plotted 
RDFs represent averages over 20 ps. The curves show 
the Sn-Sn and Cu-Cu interactions for the atoms in the 
surface layer and of the Cu-Cu interactions in the second 
layer (below the surface). The RDF of the second layer 
has been displaced for clarity. 

The limiting surface composition of 33% Sn seen in segregation measurements can 
be explained by comparing the energy cost of replacing a Cu atom with a Sn atom in the 
p(\/3 x V3)-R 30° alloy overlayer with the energy of placing the Sn impurity substitutionally 
in a bulk site. We find that the energy of adding an extra Sn impurity substitutionally on the 
alloy surface is 1.6 eV higher than the energy of placing the Sn impurity in the bulk. Similarly, 
exchanging a surface Sn atom with a Cu atom in the bulk is unfavourable by 2.6 eV. Thus, an 
increase or decrease of the Sn composition at the surface is energetically unfavourable with 
respect to diffusion of Sn into or out of the bulk. 

The resulting structure obtained for one-quarter monolayer Sn coverage on Cu(100) also 
agrees with segregation [3,5] and deposition experiments [2] namely a 2D alloy with a p(2 x 2) 
structure. MD simulations indicate that the structure is stable up to about 600 K. The structure 
of the Cu atoms with the alloy overlayer is modified from ideal (100) positions to accommodate 
the strain caused by the larger Sn atoms. As in the case of the (111) surface, the 2D alloy 
formed on the (100) surface exhibits a ripple, with the Sn atoms located 0.65-0.68 A above the 
Cu atoms at 100 K. The rippling decreases at higher temperatures (300-600 K). The p(2 x 2) 
structure (top and side views) is shown in figure 4. The location of the Sn atoms is more clearly 
seen in figure 5 which shows the atomic density profile of the first few layers. The rippling of 
the alloy phase has not been confirmed experimentally. Ion-scattering or STM measurements 
should allow its determination. 

The configuration of the Cu atoms in the alloy phase is distorted with respect to ideal (100) 
positions. Figure 6 shows the 2D RDF of the p(2 x 2) alloy phase (surface layer) and of the 
Cu atoms immediately below (second layer) at a temperature of 353 K. The curves represent 
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Figure 4. Sn/Cu(100) system. The red circles are the Sn atoms and the green circles are the Cu 
atoms. (0) Top view of the Sn overlayer and the topmost layer of Cu(100) atoms, at 353 K. The 
octagonal arrangement of Cu atoms around a number of Sn atoms is shown. (/;) The side view of 
(a) showing the rippled p(2 x 2) 2D ordered alloy structure. 
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Figure 5. Sn/Cu( 100) system. The atomic density profile 
of the p(2 x 2) structure at 580 K as a function of distance 
from the centre of the slab. The profiles represent time 
averages over 20 ps. The rippling of the alloy surface 
layer is smaller than in the Cu(l 11) case. 

Figure 6. Sn/Cu(100) system. The 2D RDF of the first 
two layers of the p(2 x 2) structure at 580 K. The plotted 
RDFs represent averages over 20 ps. The curves show 
the 2D RDFs of the Sn-Sn and Cu-Cu interactions on the 
alloy layer (surface layer) and of the Cu-Cu interactions 
on the layer below the alloy structure (second layer). The 
RDF of the second layer has been displaced for clarity. 

averages over 20 ps. The first-, second- and third-neighbour distances between the Sn atoms 
are approximately 4.3, 5.1 and 7.5 Ä, which are in the ratios 1:1.2:1.8 and agree well with 
what is expected of a 2D square structure with four-fold symmetry. On the other hand, the 
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first-, second- and third-neighbour distances between the Cu atoms in the alloy phase are in the 
ratio 1:2:3, which corresponds to a distorted octagonal structure. These ratios have also been 
observed in the Sn-Sn RDF of Sn/Cu(100) at higher coverages and temperatures (1100 K) 
[11]. The Cu atoms suffer a rearrangement resulting in an octagonal geometry around the Sn 
atoms as is shown in figure 4(a). 

RBS/channelling data reported by Abell et al [2] showed that the deposited Sn atoms 
displaces at least one Cu atom from its regular latice site. These Cu atoms are randomly 
distributed, whatever the deposition temperature. However, due to the crude pictures obtained 
by the mean of RBS/channelling, the experimental results were not capable of elucidating 
the octagonal rearrangement of the Cu atoms in the alloy [2]. The alloy structure does not 
significantly modify the structure of the Cu atoms in the second layer. The RDF of the second 
layer is consistent with that of an undistorted (100) surface structure. 

5. Conclusions 

The calculations presented here show that Sn deposition on (111) and (100) surfaces of Cu 
results in the formation of 2D ordered alloy structures. On the (111) surface, the one-third 
monolayer coverage leads to the formation of a 2D alloy phase with a p(V3 x \/3)-R 30° 
structure that is stable up to temperatures of 900 K. This result is in agreement with deposition 
and segregation experiments. On the (100) surface and for one-quarter monolayer coverage, 
the resulting 2D alloy phase has a p(2 x 2) structure. This result is in agreement with LEED 
measurements and segregation experiments. Both of these alloy phases are rippled, with the 
Sn atoms located above the Cu atoms. The calculated value of this rippling is 0.45-0.48 A for 
the p(v/3 x \/3)-R 30° structure in close agreement with the experimental value of 0.39 Ä. The 
rippling on the p(2 x 2) structure is about 0.65-0.68 Ä. Segregation energy calculations show 
that one-third monolayer coverage on the (111) surface should be the maximum equilibrium 
surface composition. Incorporation of more or less Sn atoms in the surface layer is energetically 
unfavourable with respect to incorporation of Sn atoms in the bulk. These values are consistent 
with segregation experiments. Finally, in the (111) case, the Cu atoms belonging to the 2D 
alloy phase do not suffer any change in their structure with temperature or coverage changes. 
This is not the case for the (100) surface, where the alloy Cu atoms rearrange into in an 
octagonal structure via Cu-Sn interactions. This rearrangement is observed for all of the 
different temperatures and coverages tried. 
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Abstract. The computation of a solid-solid interfacial free energy requires the calculation of 
the work required to form the interface from the perfect crystal along any reversible pathway. 
The practical difficulty lies in finding a computational path connecting the perfect crystal to the 
defective crystal that is reversible. We present a method for calculating the interfacial free energy 
of any solid-solid interface defined geometrically by a slip on a specified crystallographic surface, 
for example, a stacking fault or an antiphase boundary. A non-physical pathway is defined using a 
'virtual slip' of the system in which atoms can exist in two places at once. This avoids any 'hard 
collisions' between atoms, and assures that the pathway is reversible. This connects the perfect 
and defective crystals directly, as described by a given interatomic potential, without recourse to 
any harmonic approximations. 

1. Introduction 

The development of methods to calculate solid-solid interfacial free energies is motivated by the 
importance of such quantities to several areas of materials science and technology. For example, 
nucleation theory relates the rate of precipitate formation, and thus the thermodynamic stability 
of solid solutions, to the interfacial free energy between two phases. Furthermore, the passage 
of a dislocation through a crystal can create various extended defects, such as antiphase 
boundaries (APBs) and complex stacking faults (CSFs), and the difference in free energy 
between such interfaces and the perfect crystal can have important consequences for dislocation 
motion, and thus affect the macroscopic mechanical properties of the solid. 

Thermodynamics informs us that the interfacial free energy is equivalent to the work done 
along any reversible pathway connecting the perfect and defective crystal. In atomistic terms, 
reversibility implies the absence of 'hard' collisions between the atoms, and it is this aspect of 
the problem that is responsible for the greatest computational difficulties. The goal of avoiding 
hard collisions often necessitates the formulation of non-physical pathways, using the general 
'^.-integration' technique, where A. parametrizes the path connecting the reference state and 
the state whose relative free energy is desired. 

The basic idea behind A.-integration goes back to Kirkwood [1], but the first application 
to the calculation of solid-liquid interfacial free energies was performed by Broughton and 
Gilmer [2]. The method employed continuous classical interatomic potentials to describe 
the solid and liquid phases. Later, Frenkel and Ladd [3] devised a A.-integration method to 
determine the difference in free energy between cph and fee crystals [3]. Here the pathway 
connected hard sphere crystals to the corresponding harmonic solids, whose free energies 

t Present address: Portland State University, Department of Engineering and Technology Management, PO Box 751, 
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were known analytically. This pathway was later extended to connect crystals described 
by continuous classical potentials to the corresponding harmonic crystals [4]. There have 
been many applications of similar ^-integration methods using harmonic and quasiharmonic 
reference states to compute free energies of solids, including chemical disorder [5]. The virtual 
slip pathway presented here cannot include the important effects of chemical disorder near an 
interface, and we will consider only perfectly ordered interfaces in the numerical examples. 
Possibilities of combining this technique with other methods for treating chemical disorder are 
considered briefly in the discussion. 

Previously, we presented the first application of ^-integration methods to the calculation 
of solid-solid interfacial free energies [6,7]. This problem is qualitatively different from 
calculating liquid-solid interfacial free energies, where the liquid can continuously deform in 
response to changes in the solid. The 'stiffness' of solid-solid interfaces requires that much 
care be exercised in designing a pathway connecting the perfect and defective crystals that 
avoids hard collisions. In 'simulated alchemy', we took advantage of the particular geometry 
of APBs, which can be described by either a slip of one half of the crystal with respect to the 
other half, or a change in the chemical identity of certain of the atoms in one half of the crystal. 
This is possible because the slip vector takes one lattice site into another. The alchemical 
pathway then changes the chemical identity of certain of the atoms in half of the simulation 
cell, thus creating an APB while avoiding any hard collisions. 

However, simulated alchemy cannot be applied to CSFs. While a CSF can be described 
by a slip of one half of the crystal with respect to the other half, the slip vector does not 
translate one lattice site into another, and a CSF cannot be described by a change of chemical 
identity of certain of the atoms in half the crystal. The purpose of this article is to present a 
^-integration pathway which is applicable to computing the interfacial free energy of CSFs, 
or of any interface that can be denned by a translation in a particular crystallographic plane of 
one half of the crystal, including APBs. 

The basic idea is to perform a 'virtual' slip of the system along a pathway where the atoms 
in half the crystal can exist at two places at once, the relative separation a given atom and its 
'virtual' partner being given by the (constant) slip vector that defines the interface. At X = 0 
the atom exists 'completely' at the initial site, and at X = 1 the atoms exits 'completely' at the 
translated site. At intermediate values of X, the atom exists at both sites at once. At all times, 
all atoms (and their virtual partners) can execute thermal motion, and the simulation cell can 
deform, as in standard simulations. The interface is thus created under the given conditions of 
temperature and stress, while avoiding hard collisions. 

In the following sections we describe the implementation of the virtual slip pathway, 
present numerical results for APBs and CSFs in Ni3Al using a second-moment potential, and 
end with a brief discussion. 

2. Theory 

The interfacial Gibbs free energy is evaluated using the A-integration method as 

where the brackets {F)"s'iT imply an ensemble average of the phase space function F using 
the ensemble characterized by the number of atoms N, the stress Sjj, the temperature T and 
by the parameter X. The interfacial area is a, and we assume there are J such interfaces 
created simultaneously in the simulation cell along the pathway specified by X. In practice, 
we evaluate equation (1) by performing simulations at several discrete values of X to obtain 
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Ns- T 
* W = ([l/(2aO](9#M/9^))x "   as an average over molecular dynamics or Monte Carlo 
trajectories, and then perform a numerical integration. 

The Hamiltonian is split into two parts according to 

H = (l-X)H0 + \Hl. 

The only portion of H that depends on X is the interatomic potential, <i>[rnm}, where for 
simplicity we have assumed a pair form for the potential depending on the distances between 
atoms n and m, rnm = [(q\n) - q\m))gij(q\ - q\m))]111, and where the dimensionless 
coordinates of atom n, qf , have been scaled by the matrix of lattice vectors, ay, and where 
the metric is g,-y = akiakj. We employ a simple matrix notation where the first index labels 
rows, the second index labels columns and repeated indices imply summation. We can write 
H using a Nose-Hoover thermostat as 

H (E   tl1 )+ 2^£[(1 -m{r™]+mr™}] 

+(JViA^2JV3) ( ^( - \A\iSijEij) ) + ( - - + (UomkBT) ln(s) ). (2) 

Here s^1/?, ' = p" are the scaled components of atomic momenta of atom n, ß„ is the 
atomic mass of atom n, *~V,'; = Ptj are the momenta of the lattice vector matrix elements, 
s is the Nose time scale, 9 is the momentum of the time scale, /atom is the number of atomic 
degrees of freedom, including centre of mass constraints, &B is Boltzmann's constant, T is the 
absolute temperature and W and Q are fictitious masses. The stress and strain are measured 
with respect to the initial configuration, and may be related to the stress and strain measures 
referred to the system at time t (sy and e,-j) by: 

Sij = \F\iF~k^PFJp
l) (3) 

Etj = \{FkiFkj - Sij) = FkiekpFpj (4) 

where the deformation gradient is 

Fij(t)=aik(t)Ak~J
1. (5) 

We use the special notation A,-y- to denote the matrix of lattice vectors at time zero: 

Ay=ay(0). (6) 

The volume of the unit cell at time zero is denoted by the determinant, \A\. The expression 
— \A\(SijEij) then serves as the nonlinear elastic analogue of the TV term encountered in 
standard discussions of switching between ensembles using Legendre transformations. The 
numerical factors (JV"i N2N3) give the number of crystalline cells (unit or primitive cells) along 
each lattice vector in the entire system, and arise because we have referred all strains back to 
the crystalline cell defined by öy. This is possible because the work term | A \ (Sy Etj) describes 
only homogeneous deformations, because only one set of lattice vectors is employed. 

Physically, what all this means is that integrating trajectories generated from H0 and 
assuming ergodicity implies that time averages are equivalent to averages over the Gibbs 
ensemble characterized by the partition function in the phase space of lattice vectors, scaled 
coordinates and momenta, and using a nonlinear elastic work term: 

E(NsijT) = yfd{q^}f d{„«} f ^^^[(t^V^ 
N     N 

2^^-{r°nm}-\A\(SijEij) (7) 
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where y is a normalization constant and / d{qf")] implies integration over all dimensionless 
atomic coordinates, etc. The lattice vector momenta, fictitious masses and Nose thermostat 
variables have been integrated out of the expression. Readers are referred to [8] for details. 

The slip vector which characterizes the interface is .s, = a,-;-(0)ay, where o,j(0) is the 
matrix of lattice vectors at time zero, and 07 are the dimensionless components of the slip 
vector with respect to these lattice vectors. Similarly, we write the dimensionless components 
of atom n at time t as q{"\t), where the Cartesian components of the atom are given by 

r?\t)=aij{t)qf\t). 
In the reference state {X = 0) the interatomic potential is evaluated using the standard 

expression for interatomic distances 

0 /   (nm) (nm) /o\ 
rnm = y/1i     Wj (8) 

where the metric is 

gij(t) = aki(t)akj(t) (9) 

and the interparticle separation includes the nearest image transformation: 

9<flm) = (9l?n)-*/m))-JV,-NI ^"W") (10) 

where AT,- is the number of crystalline cells along the ith lattice vector in the simulation cell. 
We take a somewhat more general approach than simply allowing one interface in the 

middle of the simulation cell and another at the periodic boundaries. In the defective state 
(A = 1) we define a one-to-one mapping between the atoms and their translated 'virtual' 
partners 

A<"> = 9<"> + Jt«^- (ID 

where k„ is the number of translations of atom n by the slip vector er,. We must insure that 
the number of interfaces in the simulation cell, including the effects of periodic boundary 
conditions, is consistent with the total number of atomic planes in the simulation cell parallel 
to the interface, M, and with the 'modularity' of the translation, m. This latter quantity is the 
number of translations required to map q" into itself, i.e. 

q^^q^+mai. (12) 

Thus 

0<fc„ <m (13) 

and consistency demands that 

mod[mJ, M] = 0. (14) 

The interatomic distances in the defective state are then specified by r,|m: 

r1 
nm = y/h?m)gijh<?m). (15) 

A crucial point common to both the simulated alchemy and virtual slip pathways is the 
existence of a one-to-one mapping between the atoms in the reference and defective states. In 
the simulated alchemy pathway, the mapping is provided by the specification of which atoms 
change their chemical identity and which do not; in the virtual slip pathway, the mapping is 
provided by the virtual slips undergone by each atom over the course of the A-integration. 
This insures the consistent evaluation of the free energy derivatives in the isothermal-isostress 
ensemble, characterized by the variables (A% T). It must also be emphasized that the periodic 
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images q"m and h{"m) are each consistent with the periodicity of the simulation cell in the 
plane of the interface. Thus as long as we insure that (14) is satisfied, there are no anomalous 
effects as the size of the simulation cell is increased. In practice, we choose M sufficiently 
large so that the distinct interfaces created within the simulation cell have a minimal influence 
upon one another. 

In principle, the interfacial entropies may also be computed, using the equation: 

A Si 
f1 „ 9S,(k) 1      fl      17/ 1  3H\\N'"T   /I71       / 1   dH\ 

=L dx-^r=-i^L dHruw)A -<*wUär). 
\NsuT-, 

.(16) 
)o OA KBI-J0        |_\    \J(XöAJIX -   \Jadklk 

However, for the perfectly ordered interfaces studied here, the numerical noise in the 
trajectories swamps the small differences in the integrand of equation (16). 

3. Results and discussion 

We employ the same second-moment potential, Vitek et al [9], which was used in the previous 
alchemical calculations of APB free energies in Ni3Al [6]. Originally, this potential was fit 
in three steps. First, the Ni-Ni and Al-Al terms were fit to the cohesive energy and elastic 
constants for the bulk elemental systems. Next, the Ni-Al terms were fit to the Ni3Al (Ll2) 
and NiAl (B2) alloying energies and lattice constants. Finally, further adjustments were made 
to yield a value of the (111) APB energy of 226 mJ m~2 at 0 K. However, the parameters have 
since been adjusted, and the (111) APB energy at 0 K is now 246 mJ m~2. The final set used 
for these calculations are given in the appendix. 

As a test, we compare results for the calculation of an APB free energy via virtual slip and 
simulated alchemy. The particular APB is_on the (111) plane of Ll2 (fcc-based binary) alloys, 
and is characterized by a translation of |[110]a of the atoms on one side of the interface from 
their original lattice sites, where a is the lattice constant for the underlying cubic lattice. In the 
simulated alchemy and virtual slip simulations, a system of 2304 atoms having a total of 36 
(111) planes was transformed to have three equally spaced APBs. The (111) interplane spacing 
is approximately 2.06 Ä, and the separation between interfaces is approximately 24.72 Ä. 

0.005 

Figure 1. Simulated alchemy pathway for the Figure 2. Virtual slip pathway for the (111) i[-l, 1, 0]a 
(HUjf-l.l.Ola APB in Ni3Al at 600 K. The integral APB in Ni3Al at 600 K. The integral of * = 
of* = ((l/7a)Off(A)/3A))A overA gives an interfacial      ((l/Ja)(dH(X)/dl))x over A gives an interfacial free 
free energy of 209.1 ± 12.5 mJ m energy of 213.6 ± 8.5 mJ m" 
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Table 1. Antiphase boundary energies; comparison of simulated alchemy and virtual slip pathways 
for T = 600 K. 

AG 
Method (mJ nT2) 

Alchemy 209.1 ± 12.5 
Virtual slip     213.6 ±8.5 

Figure 3. Virtual slip pathway for the (111) I [ 1, 1, -2]a 
CSF in Ni3Al at 300 K. The integral of * = 
{(\/Ja)(dH(X)/dX))>L over X gives an interfacial free 
energy of 132.0 ± 2.6 mJ m'2. 

Figure 4. Virtual slip pathway for the (11 l)g[l. 1. -2]a 
CSF in Ni3Al at 600 K. The integral of * = 
{(]/Ja)(dH(X)/dX))x over X gives an interfacial free 
energy of 125.9 ± 5.2 m.l m~2. 

The cut-off length for the potential is 6.0 A, so the APBs are about four cut-off lengths 
apart in each simulation. The values of * = (]/Ja)(dH(k)/dk) obtained from simulated 
alchemy and virtual slip simulations of the APB at 600 K are shown in figures 1 and 2. The 
discrete values of the dimensionless parameter used are k = 0.0, 0.25, 0.5, 0.75 and 1.0. 
The interfacial free energies were then obtained using five-point numerical integrations. The 
behaviour of * = (]/Ja)(dH(k)/dk) in the simulated annealing and virtual slip pathways 
differs qualitatively, but there is no reason why they should agree. However, their integrals and 
the resulting values for the interfacial Gibbs energy (in table 1) agree to within the numerical 
noise. In these small calculations, the statistical noise along each pathway is comparable. 

Having demonstrated the compatibility of the simulated alchemy and virtual slip 
simulations for APBs, we next use the virtual slip pathway to compute a CSF energy, where the 
use of simulated alchemy is prohibited because of the change in coordination of the atoms near 
the interface. The CSF simulated is also on the (111) plane of L12 alloys, and is characterized by 
a translation of ± [112]a of the atoms on one side of the interface from their original lattice sites, 
where a is the lattice constant for the underlying cubic lattice. The fitting procedure described 
above yielded a (111) CSF energy of 142 mJ m-2 at 0 K, considerably lower than the APB 
energy. Aside from the slip vector, the same basic geometry as in the evaluation of the APB free 
energy was employed. The values of * = (\/Ja)(dH(k)/dk) for the virtual slip simulations 
at T = 300, 600 and 800 K are shown in figures 3-5, and the results of integrating these curves 
to obtain the interfacial Gibbs free energies are in table 2. We attempted simulations at 900 K, 
but that temperature was sufficient to generate defects in the simulation with k = 1, and the 
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Figure 5. Virtual slip pathway for the (111) \ [1, 1, -2]a CSF in Ni3 Al at 800 K. The integral of 
* = {(l/Ja)(3H(k)/dk))x over A gives an interfacial free energy of 121.2 ± 5.8 mJ m"2. 

Table 2. Stacking fault energies at T = 300, 600 and 800 K using the virtual slip pathway. 

T AG 
(K) (mJ m~2) 

0 142 
300 132.0 ±2.6 

600 125.9 ±5.2 

800 121.2 ±5.8 

resulting noise swamped the difference in free energy. The entropic effects in these calculations 
involving perfect interfaces with no chemical disorder are small, but they are observable in the 
small decrease of the CSF interfacial free energy with temperature over the range of 300-800 K. 

In conclusion, we have presented results for a new pathway for computing solid-solid 
interfacial free energies. Although the simulated alchemy and virtual slip pathways are 
redundant for the case of APBs, the methods are in fact complimentary. The simulated alchemy 
path can be applied to systems having chemical disorder, and the virtual slip path can be applied 
to any interface characterized by a relative slip of the crystal on a particular surface. We have 
demonstrated agreement in the case of APBs, and have applied the virtual slip method to a 
CSF on (111) in Ni3Al. 

Each method is 'direct' in that no reference is made to any harmonic or quasi-harmonic 
limit; the calculation only requires an interatomic potential, and the quality of the computed 
interfacial free energy is then consistent with the accuracy of that potential. While the methods 
are immune to limitations of the sort encountered in the use of harmonic and quasi-harmonic 
approximations [5], the temperature regime in which accurate interfacial free energies may be 
computed is similarly limited. If the temperature is sufficiently high to generate a defect during 
the simulation, as in the case of the CSF at 900 K, the resulting statistical noise will swamp the 
calculation. The small calculations performed to date indicate that the statistical noise present 
is sufficiently low to allow determination of interfacial free energies; however, the noise is 
large enough to preclude calculation of the interfacial entropies in the non-disordered systems 
studied so far. 

In principle, the alchemical pathway [6] could also be applied to chemically disordered 
systems. For example, it would be straightforward to chose a set of atoms in the simulation 
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at random and then calculate the change in free energy as the chemical identities of these 
specific atoms were changed. This alchemical procedure could also be applied to a simulation 
having an interface created by either a simulated alchemy or virtual slip pathway, thus adding 
a degree of chemical disorder to a CSF or APB. Another possibility would be the combination 
of alchemical and cluster-variation methods [10], with separate alchemical pathways for each 
distinct cluster in an expansion. 

The classical potential used here has been fit to give reasonable energies for (111) 
interfaces; energies for other interfaces can be poor. In particular, the energy of the APB 
on (001) is very low [6]. The inability of classical potentials to simultaneously fit different 
interfacial energies is a commonly encountered problem, and any discussion of the anomalous 
flow in Ni3 Al, which is thought to involve the relative free energies of various (111) and (001) 
interfaces [11], will require more realistic potentials. 
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Appendix. SMA (second moment approximation) potential parameters 

The centrosymmetric form taken for the interatomic interaction in the second moment 
approximation for Ni3Al is 

Mu„n, ^Ni-NiC^nm) /»,. ^Ni-Ni ('■»im) 

0 = -EE VAI-Al (/nm ) - EE #AI-Al0nm) 
n = \ m^n 

■ VNi-Alfoim) . 
\ n~] m^n 

#Ni-Al(>",mi) 

1/2 

(17) 

where rnm is the interatomic distance; the brackets indicate the possible chemical interactions. 
The parametrization employed here has been 'massaged' to give reasonable (111) APB and 
CSF energies in Ni3 Al at 0 K (figures 6 and 7). The distinct pair potentials for Ni3 Al are given 
by three forms for three ranges of interaction (see also tables 3-7): 

400       600 
step 

1000 400      600       800      1000 
step 

Figure 6. Steepest descent for (111) \ [-1, 1, 0]n APB 
energy at 0 K; the atomic coordinates and lattice vectors 
were varied. 

Figure 7. Steepest descent for (111)£[1, 1. -2]a CSF 
energy at 0 K; the atomic coordinates and lattice vectors 
were varied. 
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Table 3. SMA parameters, distances defining distinct regions of the pair potential; see the appendix 
for details. 

Distance 

Parameter (Ä) 

aNi-Ni 0.61 

%i-Ni 1.465 
ÖA1-A1 0.61 

&A1-A1 1.45 

«Ni-Al 0.61 

&Ni-Al 1.48 

Table 4. SMA parameters, expansion coefficients in pair potential; see the Appendix for details. 

k 

,Ni-Ni rk 
(A) 

-Al-Al rk 
(A) 

„Ni-Al rk 
(A) 

1 4.317 1695 4.9616175 4.35174 

2 4.23611244 4.779354 4.24473 

3 3.876642 4.414827 3.88803 
4 3.171798 4.252 815 2.96061 
5 2.889 8604 3.645 27 2.52223 

6 2.4317118 2.863 99459 0.700000 

Table 5. SMA parameters, expansion coefficients in pair potential; see the appendix for details. 

k 

„Ni-Ni 
ak 
(eV A"3) 

„Al-Al ak 
(eV A"3) 

„Ni-Al 
ak 
(eV A"3) 

1 0.751 863 19 0.485 49715 -0.646920 88 
2 -1.173 09138 -1.12214795 1.139 26928 

3 0.895 74543 2.107195 59 -0.665 510 61 
4 -2.015 34424 -1.61906974 1.46802193 

5 2.99603651 0.443144 85 3.0000000 

6 4.5692083 1.5283343 0.0000000 

Table 6. SMA parameters, expansion coefficients in pair potential; see the appendix for details. 

„Ni-Ni 
8k 

o Al-Al 
Pk 

oNi-Al 
°k 

0 7.658 30 7.67810 8.013 00 
1 3.3339 -1.58260 -0.493 200 
2 -10.6003 -4.63410 -5.933 20 
3 3.90090 2.107 60 2.388 90 

Vki-NiOnm) 

£[«Ni-Ni(rNi-N'-r„ffl)
3] 

k=\ 

exp E/oNi-Ni/,.     \k\ 
(Pjfc Vntn)  ) 

k=0 

(ZNie)    0Ni-Ni 
'ntn 

'"cut > rnm > »Ni-Ni 

ÖNi-Ni ^ rnm ^ ^Ni-Ni 

fnm < ANi-Ni 

(18) 
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Table 7. SMA parameters, expansion coefficients in band energy; see the appendix for details 

Distance 
Parameter     (Ä) 

P\ 
Ni-Ni 

„Ni-Ni J~> 
,Ni-Ni 

Vi Ni-Ni 

„Al-Al °\ 
„Al-Al 

V\ 
Al-Al 

Yi Al-Al 

4.860 360 

3.766 779 

0.289298 31 

0.0746414 

4.3171695 

3.277 5246 

0.657 319 92 

-2.148 234 53 

VAI-Al (>"„,„) 

^Ni-Al (rnm) 

Et 
k=\ 

exp 

.Al-Al/..Al-Al 
(r - r,„„y] 

l>rAi('--)*) 
k=o 

(ZA1<?)    0AI-A1 

E^^VIA!-^)'] 
k=\ 

exp 
r   3 
E/oNi-Al,       sk\ 

(Pk (ri,m)  ) 
<r=0 

1 
(ZAic)(ZNie)—0Ni-Ai 

'tun 

''cut > f"nm  > t»AI-Al 

«Al-Al  ^ film  ^ ^Al-Al 

< «Al-Al 

> &Ni- Ni-Al 

«Ni-Al ^ r„,„ < ^Ni-Al 

< «Ni-AI 

where the screened Coulomb functions are 

0Ni„Ni = 0.1818exp[-(3.2)rIim/,oNi_Ni] + 0.5099 exp[-(0.9423)r„„,/pNi_Ni] 

+0.2802 exp[-(0.4029)r,„„/pNi_Ni] 

+0.028 17 exp[-(0.2016)rIIffl//oNi_Ni]. 

0A1-M = 0.1818exp[-(3.2)r„„,/pA,_A1] + 0.5099 exp[-(0.9423)rnffl/pA,_Ail 

+0.2802 exp[-(0.4029)r„„,/pA1_A|] 

+0.028 17 exp[-(0.2016)r„,„/pA1_AI]. 

0Ni_A1 = 0.1818exp[-(3.2)r„l(I//oNi_Ai] + 0.5099 exp[-(0.9423)r„„,//oNi_AI] 

+0.2802 exp[-(0.4029)r„„,/pNi_A1] 

+0.028 17 exp[-(0.2016)r;„„/pNi_A,] 

and the scaled distance factors are 

pNi_Ni = [(0.885 34)(529 177 249)]/[(ZNi + ZNi)] 

pA,_A1 = [(0.885 34)(529 177 249)]/[(ZA, + ZA,)] 

/ONi-Ai = [(0.885 34X529 177 249)]/[(ZNi + ZA,)]. 

The atomic numbers are ZNJ = 28 and Z -Al 13, e 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

137 he, and the cut-off length is 
6.0 K. The distinct contribution to the band energy from the hopping integrals for Ni.i Al 
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are: 

#Ni-Ni {rnm) 

HAl-A\(fnm) 

?Ni-Ni 

fnm < Öfji- ■Ni 

X>f-Ni(pi
Ni~Ni - rnm)3] rcut > rnm > fc 

0 
2 

X^[nA^A1(pf "A1 - 7-Km)3] '"cut > rnm  > bM-M 
k=\ 

0 rnm < ^AI-AI 

H^i-A\(rnm) = \/ HNi-m(rnm)HM-A\(rnm) — 0. 

(27) 

(28) 

(29) 

The cross terms in the band energy are taken to be the geometric mean of the corresponding 
direct terms. 
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Abstract. The use of either linear or nonlinear elastic theory in deriving methodologies for 
atomistic simulations is shown to be based on two very different views of the interaction of 
the 'system' with the 'reservoir'. These views may be related through the definition of a 
phenomenological relaxation time, which describes how the reservoir responds to changes in stress 
of the system. A general procedure for introducing a finite relaxation time of the reservoir into 
atomistic simulations is described, and numerical results are presented which demonstrate how the 
linear and nonlinear simulations can be brought into agreement. A discussion of the underlying 
fhermodynamic assumptions is given, and the benefits of using Nose-Hoover chains in simulating 
structural transformations are demonstrated. 

1. Introduction 

The simulation methods of Andersen [1] and of Parrinello and Rahman [2-4] are based, 
in part, upon the underlying assumption of linearity in the interaction between the atomic 
system and the 'reservoir' which exerts a stress on the system and causes it to deform. There 
were early attempts at introducing nonlinear elastic effects [5,6], the motivation being that 
macroscopically, nonlinearity is important during large, rapid deformations, and this is the 
regime most suited to direct atomistic simulations. More recently, we presented an alternative 
nonlinear treatment [7], the principal result of which was the appearance of an effective external 
pressure that changed as the system deformed, and that was dynamically balanced by the atomic 
virial pressure in accordance with a nonlinear extension to the virial theorem. The distinction 
drawn between the linear and nonlinear simulations involved the presumed relaxation of the 
stress reservoir [7]: in the linear case, the relaxation was instantaneous, whereas in the nonlinear 
case, the reservoir never relaxed. However, at present there is no computational formalism for 
unifying atomistic simulations based on linear and nonlinear elasticity, and the connection to 
continuum mechanics remains obscure. 

The purpose of this article is to present an explicit formalism that allows one to 
continuously switch between the familiar linear and less familiar nonlinear equations of motion 
for molecular dynamics simulations with varying cell size and shape. Furthermore, in bridging 
this gap, a more intimate connection between atomistic simulations and continuum mechanics 
will be established. The only new parameters that must be introduced is a phenomenological 
relaxation time of the stress reservoir, Treiax, and a strain threshold for the relaxation to take 
effect. This will be justified thermodynamically by appealing to the equations of nonlinear 
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Portland, OR 97207, USA. 
+ Present address: Yale School of Management, 135 Prospect Street, PO Box 20820, New Haven, CT 06520, USA. 
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elasticity, including mechanical dissipation [8]. We will also demonstrate that substantial 
benefits of employing Nose-Hoover chains [9] when structural transformations are simulated. 
We will first summarize some relevant macroscopic formulae from continuum mechanics. 

In nonlinear elasticity [10,11], one must distinguish between strains measured relative to 
some reference state at time zero, or to the current (deformed) state at time t. The standard 
expressions for strain are 

(1) 

(2) 

EU = --±(FkiFkj-8ij) 

eU = {(Sij-F^F,-/) 

and the corresponding expressions for stress are 

Sij = \F\(Frk
]skpFj-;) 

Sij = \F\-](FikSkpFjp). 

(3) 

(4) 

Here Sy and Eij are the stress and strain in the system at time zero, and SJJ and e,j are the 
stress and strain in the system at time t. We use a matrix notation for the Cartesian tensors; 
the first index labels rows, the second index labels columns and a summation convention for 
repeated indices is implied. Transposes may be identified by the order of the indices, for 
example in equation (4), SkpFjp implies 'the kth row and y'th column of the product of the 
matrix S times the transpose of the matrix F. In continuum theories, Ejj = Ejj(t, {Rk}) 
and etj — etj(t, {r,})—as well as Sij = Sjj(t, {Rk}) and Sjj = Sjj(t, {/-,})—are functions of 
coordinates, referring to the initial axes {Rj} or to the current axes {/-,-}; the mapping between 
the initial and current (i.e. the reference and deformed) coordinates near {/?*} and {r„} is 

Fij(t,{rP),{Rk}) = -~ (5) 

Typically, {/?,} and {r,-}—as well as the corresponding upper case and lower case tensorial 
functions of these variables—are referred to as 'Lagrangian' (or 'material') and 'Eulerian' (or 
'spatial'), respectively. Certain of these quantities have commonly accepted names: £,y is the 
'Green-Lagrange' strain, Sjj is the 'second Piola-Kirchoff stress, .?,-_,• is the 'Cauchy' stress 
and F(j is the 'deformation gradient'. 

One obvious distinction between the material and spatial descriptions occurs in the 
time dependence of quantities defined with respect to the material or spatial coordinates. 
If X = X(t, Rj) is a function of the material coordinates, then (d/dt)X = (d/dt)X. 
However, if x = x(?,r,) is a function of the spatial coordinates, then (d/d/)x = (d/dt)x 
+((d/dt)rj)(d/drj)x. A less obvious distinction is the difficulty of defining a boundary 
condition problem in the Eulerian frame, because of, for example, the inability of specifying 
the Cauchy stress s,j on the (unknown) boundary of the deforming solid [11]. 

When deriving equations of motion for atomistic simulations, we typically view 
equation (5) as describing some interior region of a solid initially near {rp} and {Rk}, which is 
sufficiently small so that variations in strain and temperature across the region may be ignored. 
Furthermore, assume that the atomic lattice near {rp} and {Rk} can be described by sets of 
lattice vectors au(t, {/>}) and A,7({/?A}), where 4y({/?*}) = au(0, {rk}) and {rk(0)} = [Rk}. 
The deformation gradient is then 

Fij(t, [r„}t {/?,}) = aik(t, [rp))X;J({**}). (6) 

If we restrict our attention to just this one region and ignore 'convective' terms such as 

daik(t,{rp}) dr-j 
dn        dt 
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we can drop {rp} and {Rk}, and write 

Fij(t)=aik(t)Aj. (7) 

This is equivalent to viewing as equation (7) as describing the entire crystal undergoing 
a homogeneous deformation, but we prefer to retain the interpretation of equation (6) as 
describing a sufficiently small interior region of a solid. This latter view is suggestive of a 
'coarse-graining' approach based on the size of the atomistic simulation itself, and is consistent 
with the common use of periodic boundary conditions in atomistic simulations. We adopt a 
continuum rather than atomistic viewpoint, and refer to such simulations as 'homogeneous' 
because there is only one deformation gradient (equation (7)) in the problem, even though the 
atomic configuration can become highly defective within the simulation cell. 

The lattice vectors atj (t) can then serve as scaling factors to define the dimensionless 
coordinates of atom n through 

r\n\t)=aij{t)q{f\t). (8) 

Here q^ is then the projection of atom n onto the j'th lattice vector (i.e. the ith column of 
aij), scaled by the length of the j'th lattice vector. Equation (8) is typically the starting point 
for formulations of atomistic simulations with varying cell size and shape [1-4]. This scaling 
allows for the identification of microscopic quantities that have as their limits the corresponding 
macroscopic thermodynamic variables, for example the microscopic virial expression for the 
pressure and the thermodynamic pressure [12]. We will continue the microscopic analysis 
in the following section, but first we must obtain a few more definitions from continuum 
mechanics. 

The nonlinear expression for the virtual work done in an infinitesimal deformation of the 
material is obtained by consideration of an infinitesimal deformation of a material already in 
a state of finite strain [10]. First define a quantity we shall call the 'infinitesimal strain rate': 

skp = ^tFkny-; = ^akny^ (9) 

and its symmetrized version: 

£kp = \[£kp + £pk\- (10) 

We call Sjj an infinitesimal strain rate because from equation (9) we obtain the approximate 
relations Fij(t + X) ^ (8ik + Xsik)Fkj(t), or equivalently atj{t + X) « (8ik + Xsik)akj(t), for 
some small time step X; rigid rotations of the system are eliminated using the symmetrized 
infinitesimal strain rate, e,;-. Note, in particular, that we are not decomposing the deformation 
gradient as Fij = (5,-;- + e,j) [13]; furthermore, the infinitesimal strain rate e,-;- remains well 
defined and equation (9) is satisfied regardless of the magnitude of the deformation. The time 
derivative of the Green-Lagrange strain can then be written in the simple form: 

— Eij = FkjSkpFpi. (11) 

We refer all strains and stresses to the reference system at time zero, and write the infinitesimal 
change in strain as X[{d/dt)Eij], where X is a small time step: the virtual work done in further 
deforming the system, already in a state of finite strain specified by F^, is then 

\A\Sij (^Eij) = \a\skp(Xskp) (12) 

where \A\ and |<z| are determinants of the lattice vectors at time zero and time t, and serve 
as a reference volumes.  The dependence of the work on the strain history of the material 
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arises implicitly in equation (12) through the deformation gradient because we have computed 
the work required to further deform a material in a state of finite strain. This suggests the 
following equivalent forms for the 'work term', i.e. that part of the Legendre transformation 
used in switching between various thermodynamic potentials: 

Strain = -|A|(Sy£y) = -|fl|(.Vyey). (13) 

We can make the Legendre transformations more formal by noting that 3Wstrajn/3£,j 
= | AIS,-;, and this guarantees the correct change of independent variables from Ejj to Sy [14]. 
Thurston [15] summarized the standard thermodynamic potentials and their exact differentials 
for materials subjected to stress or to hydrostatic pressure. Our expressions are consistent with 
these except for the minor difference of using reference volumes. 

The thermodynamic states subject to general stress are not only characterized by an entropy 
or temperature, and by a strain or stress, but also by a reference state with respect to which 
the strain is measured. Formally, how do we change from one reference state to another, 
and what is the thermodynamic significance of so doing? The answer involves an explicitly 
dissipative procedure which we will implement in accordance with the 'principle of fading 
memory' [16]. This is a formalization of the observation that it is not necessary to know the 
entire strain history of a material to determine its present state. Before describing the numerical 
technique for continuously changing reference states during a simulation, we must summarize 
the phenomenological treatment of mechanical dissipation in continuum mechanics. 

As discussed by Lemaitre and Chaboche [8], the treatment of finite deformations often 
requires the introduction of ideas from irreversible thermodynamics, and this is also true in 
the present analysis. The goal is to break the problem into a reversible 'elastic' part and 
an irreversible 'plastic' part. While it is possible to write the infinitesimal strain as the sum 
of separate elastic and plastic strains, this is found to be impossible when finite strains are 
considered. Instead, the deformation gradient is written as the product of an elastic (ry) and 
a plastic (©,-_,•) transformation as: 

Fij = r,j®,j. (14) 

The interpretation of equation (14) assumes the existence in strain space of some 'intermediate 
relaxed' state; see the figure in [8, p 48]. This intermediate state has relaxed from the initial 
reference state through an irreversible plastic deformation; further small deformations of this 
intermediate relaxed state are reversible and elastic. The finite strain cannot be separated into 
elastic and plastic parts; however, the strain rate can be decomposed as a sum of plastic and 
elastic strain rates as 

£ij(t) = Yij(t) + <Pij(t) (15) 

where y,y (0 is the elastic strain rate and #>,•_,■ (r) is the plastic strain rate. This naturally leads to 
expressions for the elastic and plastic powers as \a \skPYkp ar|d \a \skp<Pkpi respectively. Explicit 
formulae for these quantities are given in the following section. The plastic power is necessarily 
positive, 

\a\skpfkp ^ ° (16) 

and is indicative of the entropy produced during an irreversible process [8]. 
The difficulty of defining a boundary condition problem in the Eulerian frame, mentioned 

above, can manifest itself in atomistic simulations with periodic boundary conditions through 
the inability of predicting the Cauchy stress in the simulation after a finite deformation. In 
continuum analysis, one simply cannot know the boundary conditions for the appropriate 
boundary condition problem. In molecular dynamics simulations, one can always run 
trajectories; however, the internal virial pressure tensor does not, in general, balance the 



Linear and nonlinear elasticity in atomistic simulations 361 

negative of the Cauchy stress, but rather the effective external pressure [7]. This latter quantity 
contains a dependence on the strain history, and manifests itself through a splitting of the 
pressure fields during structural transformations; this splitting, in turn, is a consequence of the 
change in symmetry during the transformation. In a purely mechanical sense, the goal of the 
present analysis is to demonstrate how the formalism of irreversible thermodynamics of solids 
[8] may be incorporated into molecular dynamics simulations to ensure that the virial pressure 
tensor and the negative of the Cauchy stress (eventually) coincide. This allows for the greatest 
degree of consistency between the atomistic and continuum formulations, given the present 
'coarse-grained' approach. 

In the following section, we summarize the equations of motion used in the molecular 
dynamics simulations, and derive an explicit connection between the linear and nonlinear 
methods through the introduction of a relaxation time. This allows for evaluation of the 
elastic and plastic factors for the deformation gradient and the elastic and plastic strain rates. 
The next section contrasts linear, nonlinear and 'relaxed' simulations of a structural phase 
transformation, and demonstrates how the relaxed simulations connect the linear and nonlinear 
results. Agreement of the virial pressure with the negative of the Cauchy stress is demonstrated 
upon relaxation, and energy dissipation is observed during relaxation. Furthermore, the 
introduction of a strain threshold, above which relaxation is allowed, will be seen to further 
bring the microscopic and macroscopic analyses into conformity. Finally, the use of Nose- 
Hoover chains to thermostat the lattice degrees of freedom is shown to significantly improve 
the treatment of temperature in simulations of structural transformations. 

2. Theory 

Begin with the Hamiltonian written in scaled time and using scaled momenta [17,18]: 
N    „(")'   -1„W'\        ,     N     N 

H 
n=\ 

>y Pi 
2ßns

2 

HNiN2N3) 

■''chain 

1       1\        1\ in2 

2 -7Z + (/atomar) In(s) 

PijPij 

£ 
2W(si)2 

1 (Jin? 

+ Wst 
'l(^l)2 

2   ß, 
+ (/cellar) InOi) 

2    Qn 

+ (kBT)\n(s„) (17) 

The negative sign in equation (13) is consistent with the sign conventions for pressure and 
stress and for measuring the work done by the atomic system on its surroundings.   The 

i„-i„-i „M' relation between the scaled and physical atomic momenta and velocities is \xn gVl s  ' p 
1.» 

>y PJ 
„w = vt   . Similarly, the scaled and physical momenta and velocities for the lattice 

vii.   Here s is the Nose time scale that -L-l, vectors are related by W~!s[ * p\- = w~*pij — utJ. 
thermostats the atomic degrees of freedom and s\ is the first time scale in the Nose-Hoover 
chain that thermostats the cell degrees of freedom. The subscripted Nose time scales sn 

and their conjugate momenta n„, constitute the Nose-Hoover chain. Following the usual 
arguments [1,9,17,18], equation (17) may be shown to imply the following partition function 
for the isothermal-isostress ensemble: 

S (Nsij T) = cf d{qln)} j d{p^} J d{ay} exp 
-1 1 N 

(n)    ■ 
Pi   Si ?pf) 

1     N     N 

4EE^ ,} + wst (18) 
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where c is a normalization constant, and / dfg/"'} implies integration over all components of 
all the dimensionless atomic coordinates, q\   = a~[\-' , etc. Here, for simplicity, we assume 

the interatomic potential <t>{r,„„} depends only on the interatomic distance, r„,„ = Jq" gijq" , 

where the metric is g,j = a* ,■«*,■. 
Previously, we have used equation (17) with equation (13) to derive the equations of motion 

based on the dimensionless atomic coordinates and the deformation gradient equation (7). We 
will re-write the equations here in a different form, using a slightly different notation. We do 
so for two reasons. First, we employ Nose-Hoover chains [9] to thermostat the cell degrees 
of freedom; this will be seen to be of practical importance in the following section. Second, 
we will re-write the cell dynamics in a symmetrical form that allows for a closer connection to 
continuum mechanics and a more intuitive discussion of the source of the nonlinearity in the 
problem. 

The equations governing the atoms are as given before [7]: 

Al)(») = _LF(«)_(^.. + (y..)y(,o (19) 
Cu jln 

where the /th component offeree on atom n is 

ßn ßn „.j,, \riim O/n„ 

q\"m) is the dimensionless nearest image difference between atoms /; and m, and the atomic 
velocities and momenta in physical time are related by v" = ß~]g~/p" . The Coriolis 

frictional term can be written as o>,; = a~p
x(ekp + spk)akj, where e,y is the infinitesimal strain 

rate defined in equation (9). Because {qjn)} are dimensionless, £ and {u,-"'} have units of time"1 

and {^"'f/'^} and co/j have units of time"2. 
We include only atomic degrees of freedom in the feedback equation for the Nose-Hoover 

thermostat [17-19]: 
N 

d£ 1 
d? ßa, 

(20) 
i-n=i 

where /atoni = 3N - 3 is the number of atomic degrees of freedom, assuming elimination 
of the centre-of-mass motion, for the TV-atom system. The fictitious mass Gatom has units of 
energy time. 

The cell dynamics are then given by [7]: 

-J-vu = ±-(Pik - Siik)\a|FJk
{ - ?, vu (21) 

at W ' 
where   the   velocity   and   momentum   of   the   deformation   gradient   are   related   by 
(d/dt)Fjj = Vij = W~lpij and £i is the first friction in the Nose-Hoover chain [9].   We 
have used the deformation gradient equation (7) as a canonical variable in the derivation in 
order to insure modular invariance [7,13], i.e. to make the kinetic term [\/(2W)]pijp{j in 
equation (17) invariant to the arbitrary choice of lattice vectors o,v. The deformation gradient 
velocities {D,^} and Nose-Hoover friction £| have units of time-1, /',•_,• and Qjj have units of 
pressure, and the fictitious mass W has units of mass length2. The external pressure, Q,j, will 
be described below. 

The dynamics for the NChain links in the chain are then given by the equations [9]: 

T& = -TrlWieikGkpBip) - f^faT] - £,& (22) 
dt Q\ 
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^■Sn = ^rlQn-ltfn-lf - kBT] - f„£,+1 (23) 
at        Qn 

d 1 2 
T7?ivchain = — [ßWei,™,-i(£/vchai„-i)  -faT]. (24) 

The fictitious masses Q„ have units of energy time. The number of degrees of freedom for the 
cell dynamics, after elimination of rigid body rotations [7], is /cen = 6. 

We now re-write equation (21) by using the infinitesimal strain rate, equation (9), to obtain: 

d      _   1 
dt£ii ~ wl 

where 

;£ij = -^[Pik ~ &ik]\a\Gk} - sikekj - ^e,7 (25) 

Gij = FikFjk. (26) 

We are free to symmetrize ei; at every time step, and thus eliminate rigid rotations of 
the system from the dynamics in equation (25). Also, equation (25) is quite close in form 
to the equations of Wentzcovitch [13]; the only differences arise in the expressions for Qik. 
The choice of the deformation gradient elements as canonical variables assures the modular 
invariance [13] of equation (25), regardless of the magnitude of the deformation [7], but this 
is a separate question from the inclusion of nonlinear effects. It might appear that dependence 
on the strain history has been erased from the problem by switching variables from Fy to 
Sij, but such is not the case; equation (25) includes the strain history through Gy, and most 
importantly, through fi,-;-. 

The effective external pressure Qtj arises naturally in canonical derivations using 
equation (13) in equation (17) through the derivative 

«"strain _     .    ,„-1 /n~ 
 ^r- = nik\a\Fjk (27) 

0 tij 

which yields 

r>.. _     rx../■„    „    \ , cc-l ,. . 
kp >

ö
PJ fly = -[Sij (s„menm) + (Fk-t

l Frl)spj]. (28) 

If one uses the lattice vectors a,-; as dynamical variables and equation (13), one obtains 
— (d/dajj)Wstam = ^ikhkj, where hjj = \a\aj^ is the surface area tensor; — (3/3a,;)Wstrain 
then gives the components of force acting on the three unique surfaces of the crystalline cell 
ay. In contrast, linear simulations [3] use the external pressure 

ßy = -sij. (29) 

We can obtain equation (29) from equation (28) by demanding that F/j = 8^, and hence 
eij = 0; this amounts to setting the reference lattice equal to the current lattice, Ay = ay (t) 
[3]. If one uses the lattice vectors as canonical variables, one can first derive a conservative 
set of equations and then set Fy = Sy [3], despite the fact that this implies Wstrain = 0 
identically. Similarly, one can use either lattice vectors or elements of the deformation gradient 
as canonical variables and derive conservative equations of motion [7]; retention of a constant 
reference lattice then yields the nonlinear simulation. The distinction between the 'linear' and 
'nonlinear' simulations thus do not arise from any linear approximation to the total strain of the 
system, nor from any linear approximation to the work term Wstrain used to derive the equations 
governing the simulation. The distinction between the 'linear' and 'nonlinear' simulations is 
not perturbative. Rather, the difference lies in the specification of the stress exerted on the 
system by the reservoir; the term 'nonlinear' implies the applied pressure depends on the 
strain history of the system, while the term 'linear' implies the applied pressure has no such 
dependence. The only term in equation (17) where strain history-dependence can arise is in 
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^strain- Comparing the treatment of stress in various simulations can be confusing because 
of the different possible definitions for stress, strain and pressure; for example, a constant 
diagonal part of the stress matrix is often treated as a 'hydrostatic' contribution [3]. However, 
such distinctions should not cloud the fundamental source of nonlinearity, which is inclusion 
of a dependence upon the strain history of the reservoir. 

While the procedure employed in deriving the standard Parrinello-Rahman equations is 
ad hoc, it is nonetheless very useful. It guarantees that the negative of the Cauchy stress 
balances the virial pressure tensor. The underlying assumption of an infinitely fast relaxation 
time of the stress reservoir is a good approximation when the experiment being simulated is that 
of a small crystal undergoing a finite homogeneous deformation while suspended in a fluid in a 
diamond anvil cell. However, it is not a good approximation when a small internal region of a 
crystal undergoes a phase transformation. In this case, the nonlinear equations, which assume 
an infinitely long relaxation time because of the constant reference lattice and a dependence 
on the strain history, offers an alternative. The problem with the nonlinear formulation is 
that it retains a relatively large amount of strain energy. We will now dissipate this strain 
energy in a manner consistent with the nonlinear continuum formulation of the irreversible 
thermodynamics of solids [8]. 

Begin by assuming a slowly varying time dependence in the reference lattice vectors Ajj. 
Further, assume that this time dependence is sufficiently slow so that we may take it to be 
constant when deriving the equations of motion for all the atomic, lattice and thermostatting 
variables. It should be emphasized that the equilibrium condition expressed by the partition 
function, equation (18), is about all we can rigorously say about the dynamics. When 
incorporating elements of the irreversible thermodynamics of solids, we try to build on this by 
assuming the time dependence of the reference lattice to be sufficiently slowly varying so that 
the equations derived under the equilibrium assumptions remain valid. Write the reference 
lattice vectors in this case as 

Aij(t) =   /        At' *(?' - t)aU{t') = {Trelax[l - exp(-«V^dax)]}"' 
Jt-W 

xf       d?'exp[(f'-0/?relax]fl,7(?')- (30) 

In practice, we can guarantee that the reference lattice is sufficiently slowly varying by 
choosing an appropriately long relaxation time rrciax and monitoring the conserved energy 
of the simulation. The time w in equation (30) provides a 'window' over which we average 
the lattice vectors to obtain the new reference lattice at time t, and the exponential function in 
the integrand weights the most recent sets of lattice vectors most heavily; those lattice vectors 
farther in the past than the window w are not included in the average. In this manner, the 
system 'forgets' its original shape. Adopting the language of Truesdell and Noll [16], we call 
*(f' - t) an 'obliviator', and quantities which employ equation (30) rather than A,7(0) we 
shall refer to as having been 'obliviated'. 

The time derivative of the reference lattice vectors is 

— Aij{t) = {rrehiX[l - exp(-w/rreiax)]}"'[a,7(f) _ exp[-w/rrciax]a,7(f - w)] A,j{t). 

(31) 

We can then define a 'reference' deformation gradient for A,y (r), using A7(0) as the reference 
state: 

©y(0 = ^t(0^.'(0) (32) 
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and an 'obliviated' deformation gradient for ay (0, using Ay (?) as the reference state: 

Tij{t)=aik(t)A^(t). (33) 

Obviously, the 'complete' deformation gradient can be recovered as 

Fij{t) = rik(t)@kj(t) (34) 

in agreement with equation (14). By construction, the time dependence of ©y(?) is slow 
compared to that of r,7(0 and fy (?)• The notation here implies identification of T,7(f) and 
0,7(0 with the elastic and plastic factors of the deformation gradient as in equation (14). We 
will continue this analogy, and postpone a discussion until after the numerical results have 
been presented. 

We can define an infinitesimal strain rate for A,7 (?) by analogy with equation (9) as 

'««=(^)A««=(sHe«w <*> 
and an infinitesimal strain rate for r ,■*.(?) as 

y'7W = (d7r^w)r^1(0' (36) 

Then defining 

Vij(t) = rik(mkp{t)T-}{t) (37) 

we can obtain the obliviated strain rate as 

Yij(t) = £ij(t)-<Pij(t) (38) 

where the total strain rate £7 (t) is given by equation (9). Rearrangement of equation (38) then 
yields equation (15). 

We can define the obliviated Green-Lagrange strain 

4 = 1(1^1^.-5,7) (39) 
and an obliviated work term, 

<ai„ = -|A|(Syf?r.) (40) 

etc, and re-derive all the molecular dynamics results under the assumption of a slow time 
variation of the reference lattice vectors, Aik(t). The result would be the same equations 
quoted above, but with the understanding that the obliviated quantities are used, for example 

-Yij = —{Pik - ^k)\a\Gr
k7

l - YikYkj - SxYij (41) 

efjit) = Yijit) (42) 

Gy = TikTjk (43) 

nlj = -[ay(w„rJ + flÄ-1)^-] (44) 

4 = ^-iyiy) (45) 
etc. The elastic and plastic powers can then be written as: 

\a\skpYkp (46) 

\a\SkpVkp- (47) 

and 

where 
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The use of the 'obliviated' reference lattice is thus seen to yield a deformation gradient 
that factors into the product of two transformations, a strain rate that decomposes into the sum 
of two rates and an 'intermediate relaxed' reference state described by the obliviated reference 
lattice vectors Ajj(t), all in agreement with the phenomenological equations of continuum 
mechanics including mechanical dissipation. We have identified the 'elastic' and 'plastic' 
quantities according to whether or not their time dependence is due to that of the reference 
lattice vectors; i.e. it is the variation of some of the parameters that characterize the equilibrium 
ensemble that gives rise to the 'plastic' quantities. But does this mathematical identification 
of the plastic and elastic strain rates make seme physically? We will next compare linear and 
nonlinear simulations with relaxed simulations employing the obliviator, and show that the 
mathematical identification of the plastic strain rate may be made to conform to physical ideas 
of plasticity through the inclusion of a 'strain threshold' above which relaxation is allowed to 
take place. 

3. Numerical results 

We have performed a series of linear, nonlinear and obliviated simulations of a bcc to close 
packed structural transformation, using a smooth, short-ranged, two-parameter pair potential 
employed in previous tests of simulation methodology [5-7]. The potential yields a bcc 
ground state at low density, and nearly degenerate fee and hep ground states at higher 
density; the imposed temperature is kept sufficiently low so that the metastable bcc phase 
remains intact for times comparable to that of the simulation. Details of the potential can 
be found in [7]. The simulations consist of starting in the bcc state, increasing the applied 
pressure P, where (-.?,,• = P<5,y), and observing the transformation. The only differences 
between the various simulations described below is the use of either the linear (equation (29)), 
nonlinear (equation (28)) or obliviated (equation (44)) expressions for the external pressure, 
and equations (26) or (43). Integrations were performed over 180 ps, the number of atoms in 
each case was 720, the temperature was thermostatted at 50 K and the imposed pressure was 
varied from 0 to 5.25 GPa. 

Four basic simulations were performed: a linear Parrinello-Rahman simulation with no 
memory and a single Nose thermostat for both the atoms and lattice vectors; a nonlinear 
simulation with perfect memory, a Nose thermostat for the atoms and a separate Nose-Hoover 
chain having nine links for the lattice vectors; an obliviated simulation having a relaxation 
time of Treiax = 60 ps, a Nose thermostat for the atoms and a separate Nose-Hoover chain 
having one link for the lattice vectors; and an obliviated simulation having a relaxation time of 
Trelax = 60 ps, a Nose thermostat for the atoms and a separate Nose-Hoover chain having nine 
links for the lattice vectors. The simulation using only a single link in the Nose-Hoover chain 
is equivalent to simply using separate Nose thermostats for the atomic and lattice degrees of 
freedom. Selected trajectories for these simulations are shown in figures 1-6. 

The most dramatic differences between the linear and nonlinear simulations are seen in 
the trajectories of the virial and external pressures, shown in figures 1 and 2. In the linear 
simulation, the diagonal elements of virial pressure Pkk fluctuate about S2kk = P. (The off- 
diagonal elements fluctuate about zero.) In the nonlinear simulation, the diagonal elements 
of virial pressure Pti fluctuate about fi,-;, which in turn depend upon the strain history of 
the system. The diagonal elements of Qu are initially degenerate, but are seen to 'bifurcate' 
when the transformation occurs, reflecting the change in symmetry that occurs when the new 
close packed phase finds itself in the old bcc matrix. The virial and external pressures in the 
'obliviated' simulations are seen to relax from the nonlinear to the linear results over the time 
Treiax, and thus provide a connection between the linear (Parrinello-Rahman) and nonlinear 
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Figure 1. Diagonal elements of virial pressure (P,j) in GPa against the simulation time: (a) linear 
simulation with no memory and a single Nose thermostat for the atoms and lattice vectors; 
(b) nonlinear simulation with perfect memory, a Nose thermostat for the atoms and a Nose-Hoover 
chain with nine links for the lattice vectors; (c) obliviated simulation with a relaxation time of 
rreiax = 60 ps, a Nose thermostat for the atoms and a Nose-Hoover chain with one link for the 
lattice vectors; (d) obliviated simulation with a relaxation time of Treiax = 60 ps, a Nose thermostat 
for the atoms and a Nose-Hoover chain with nine links for the lattice vectors. 

formalisms. In all cases, the virial pressure Ptj is seen to fluctuate about the external pressure 
Qij as defined above, in accordance with the (nonlinear) virial theorem [7]. 

The plastic and elastic powers per atom, and their integrals, are shown in figures 3 and 4. 
The elastic powers oscillate about zero in each case; however, their integrals reveal small 
negative values, consistent with the crystal undergoing compression. The plastic powers 
show a sharp increase at the time of the phase transformation, implying the large amount of 
strain energy being dissipated after the finite homogeneous deformation of the original lattice; 
this is confirmed by their integrals. The fluctuations of the (rapid) elastic powers are much 
larger in magnitude than those of the (slow) plastic powers. In the simulation with separate 
Nose thermostats, the fluctuations in the elastic power (figure 3(c)) show a dramatic decrease 
immediately after the transformation. To understand this behaviour, we examine the kinetic 
temperature in the simulations. 
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Figure 2.   Diagonal elements of external pressure (fi;y) in GPa against the simulation time: 
(a) linear simulation with no memory and a single Nose thermostat for the atoms and lattice vectors; 
(b) nonlinear simulation with perfect memory, a Nose thermostat for the atoms and a Nose-Hoover 
chain with nine links for the lattice vectors: (c) obliviated simulation with a relaxation time of 
*Yclax = 60 ps, a Nose thermostat for the atoms and a Nose-Hoover chain with one link for the 
lattice vectors; (d) obliviated simulation with a relaxation time of Trcjax = 60 ps, a Nose thermostat 
for the atoms and a Nose-Hoover chain with nine links for the lattice vectors. 

The atomic and lattice vector kinetic temperatures are shown in figures 5 and 6. Not 
much difference can be discerned between the various atomic kinetic temperatures, however 
the lattice vector kinetic temperatures show distinct differences. After suppression of rigid 
rotations of the simulation, there are only six degrees of freedom remaining in the lattice 
vector dynamics; it is therefore to be expected that the fluctuations in kinetic temperature 
should be greater than those observed in the atomic kinetic temperature. Furthermore, in 
each simulation, the lattice vector kinetic temperature is seen to 'spike' at the time of the 
transformation. This is due to the large and rapid collective motion of the lattice vectors 
executing a Bain deformation, and is unavoidable. However, this can cause trouble for the 
thermostats. In the simulation with no memory and only a single Nose thermostat, figure 6(a), 
the nature of the fluctuations changes after the phase transformation, substantially increasing 
in wavelength. This suggests that the single Nose thermostat has trouble partitioning energy 
between the atoms and the lattice vectors, when the lattice vectors alone receive a substantial 
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Figure 3. Obliviated simulation with a relaxation time of Treiax = 60 ps, a Nose thermostat for the 
atoms and a Nose-Hoover chain with one link for the lattice vector: (a) plastic power per atom, 
equation (47) (in eV ps-1); (b) integrated plastic power per atom (in electronvolts); (c) elastic power 
per atom, equation (46) (in eV ps""1); and (d) integrated elastic power per atom (in electronvolts). 

increase of kinetic energy during the phase transformation. If one attempts to correct this by 
using separate Nose thermostats for the atoms and the lattice vectors, figure 6(c), the situation 
in fact becomes worse. The single Nose thermostat drastically overcompensates, suppressing 
fluctuations in the kinetic temperature as well as the virial pressure, figure 1(c), and the plastic 
power, figure 3(c). 

These difficulties raise serious questions regarding the presumed ergodicity of the lattice 
vector trajectories. The use of a separate Nose-Hoover chain to thermostat the lattice vectors is 
seen to eliminate these problems. This serves as a specific application of the original arguments 
of Martyna etal[9] regarding the use of Nose-Hoover chains to promote ergodicity. However, 
consideration of the trajectories for the plastic power suggest that a different problems remains. 
The simulations can be viewed as occurring in three steps. First, the initial bcc crystal suffers 
a series of small deformations; there are essentially no difference between the pressure fields 
in the linear, nonlinear and obliviated simulations. However, the obliviated simulations slowly 
dissipate energy as the deformations accumulate. Second, the structural transformation occurs; 
here, the differences between the simulations become manifest in the pressure fields. Third, the 
final close packed crystal suffers a series of small deformations; differences remain between 
the linear and nonlinear simulations, and the obliviated simulations relax from the latter to the 
former. 
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Figure 4. Obliviated simulation with a relaxation time of Trc|aN = 60 ps. a Nose thermostat for the 
atoms and a Nose-Hoover chain with nine links for the lattice vectors: (a) plastic power per atom, 
equation (47) (in eV ps-'); (b) integrated plastic power per atom (in electronvolts); (c) elastic power 
per atom, equation (46) (in eV ps"1); and (</) integrated elastic power per atom (in electronvolts). 

The remaining problem is that energy is dissipated as the crystal suffers a series of 
infinitesimal deformations. While this is consistent with our definition of the obliviated 
reference lattice, it occurs in a regime we would consider to be elastic. An approximate 
solution is to only allow for relaxation after the lattice has changed volume by some specified 
percentage. We have therefore performed an obliviated simulation having a relaxation time of 
Treiax = 60 ps, a Nose thermostat for the atoms, a separate Nose-Hoover chain having nine links 
for the lattice vectors and a strain threshold of 5re|ax = 0.05. Trajectories for the pressures and 
temperatures are shown in figure 7, and trajectories for the plastic and elastic powers are shown 
in figure 8. The plastic power and energy reveal that now energy is dissipated only after the 
finite deformation associated with the phase transformation, and the temperature equilibration 
is reasonable, however a small difference remains between the 'bifurcated' branches of the 
internal and external pressures due to the incomplete relaxation caused by the threshold. 

4. Summary 

In summary, the linear and nonlinear methods simulate distinct equilibrium ensembles; this 
distinction arises from the different interaction between the 'system' and the 'reservoir'. In 
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Figure 5. Atomic kinetic temperature (K): (a) linear simulation with no memory and a single 
Nose thermostat for the atoms and lattice vectors; (b) nonlinear simulation with perfect memory, 
a Nose thermostat for the atoms and a Nose-Hoover chain with nine links for the lattice vectors; 
(c) obliviated simulation with a relaxation time of rreiax = 60 ps, a Nose thermostat for the atoms 
and a Nose-Hoover chain with one link for the lattice vectors; and (J) obliviated simulation with a 
relaxation time of rreiax = 60 ps, a Nose thermostat for the atoms and a Nose-Hoover chain with 
nine links for the lattice vectors. 

the linear case, this interaction is a one-way street; the reservoir proposes, and the simulation 
disposes. In the nonlinear case, the situation is more democratic, and more complicated. 
While each ensemble may be characterized by the total number of particles (N), the stress 
(sjj) and the temperature (T), the meaning of the stress is slightly different in each case. In 
the linear case, the atoms and lattice vectors arrange themselves so that the virial pressure 
dynamically balances the (negative) Cauchy stress —stj at all times. In the nonlinear case, 
the virial pressure balances the effective external pressure £2y(*), which can change upon a 
finite deformation of the system. This is consistent with the view that we cannot specify 
the stress on the (unknown) surface of the deforming body; in the nonlinear case, one 
must view s,; as the stress that would be balanced in the absence of a deformation of the 
system. In the absence of any finite deformation, this distinction disappears and the effective 
external pressure fluctuates about the negative Cauchy stress. Physically, linear simulations 
are most appropriate when the entire crystal is undergoing a homogeneous deformation, for 
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Figure 6. Lattice vector kinetic temperature (K): (a) linear simulation with no memory and a single 
Nose thermostat for the atoms and lattice vectors; (b) nonlinear simulation with perfect memory, 
a Nose thermostat for the atoms and a Nose-Hoover chain with nine links for the lattice vectors; 
(c) obliviated simulation with a relaxation time of Tre|ax = 60 ps, a Nose thermostat for the atoms 
and a Nose-Hoover chain with one link for the lattice vectors; and id) obliviated simulation with a 
relaxation time of rrciax = 60 ps, a Nose thermostat for the atoms and a Nose-Hoover chain with 
nine links for the lattice vectors. 

example during the hydrostatic compression of a small crystal in a diamond anvil cell. In 
this case the stress reservoir is a fluid, which can relax very rapidly to accommodate the 
deformation of the sample. By contrast, nonlinear simulations are more appropriate when only 
a portion of the material is transforming and the new phase must do work on the surrounding 
matrix to include itself. Here the stress reservoir represents the matrix; and this might or 
might not relax on a sufficiently rapid time scale for the linear simulation to remain valid. 
For small deformations, one can imagine that an acoustic wave carries away the energy 
required to deform the matrix; the linear and nonlinear simulations become equivalent in 
this limit. 

In order to connect these two ensembles, we must consider an explicit non-equilibrium 
procedure, in which some of the quantities that characterize the ensembles are changed. 
We have therefore introduced a dissipative pathway parametrized by a phenomenological 
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Figure 7. Obliviated simulations with a relaxation time of Treiax = 60 ps, a strain threshold 
of <5relax = 0.05, a Nose thermostat for the atoms and a Nose-Hoover chain with nine links for 
the lattice vectors: (a) diagonal elements of virial pressure (P,j) (in GPa) against simulation time; 
(b) diagonal elements of external pressure (Qy) (in GPa) against simulation time; (c) atomic kinetic 
temperature (K); and (d) lattice vector kinetic temperature (K). 

relaxation time and a strain threshold, along which the reference lattice vectors are allowed to 
change slowly with time. Using the obliviated reference lattice, the virial pressure balances 
tifj, which approaches stj over the relaxation time Treiax. The degree of nonlinearity—i.e. 
strain history dependence—in the problem can then be controlled with rreiax- The deformation 
gradient is seen to factor into elastic and plastic transformations, and the strain rate can be 
decomposed into the sum of elastic and plastic terms. The plastic quantities are characterized by 
the variation of the parameters that distinguish between the equilibrium ensembles, namely the 
reference lattice vectors. The definition of the intermediate relaxed state with the obliviated 
reference lattice dissipates a portion of the energy built up in the reservoir from the work 
performed on it by the atomic system, and causes the nonlinear ensemble to approach its 
linear counterpart over the specified relaxation time. Numerically, the connection of the two 
ensembles is greatly facilitated by the use of separate thermostats for the atoms and lattice 
vectors and, in particular, by the use of a Nose-Hoover chain to thermostat the latter degrees 
of freedom. 
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Figure 8. Obliviatcd simulation with a relaxation time of rrciax = 60 ps, strain threshold of 
''relax = 0.05, a Nose thermostat for the atoms and a Nose-Hoover chain with nine links for the 
lattice vectors: (a) plastic power per atom, equation (47) (in eV ps-1); (/;) integrated plastic power 
per atom (in electronvolts); (c) elastic power per atom, equation (46) (in eV ps-1); (tl) integrated 
elastic power per atom (in electronvolts). 

The identification of the elastic and plastic factors of the deformation gradient with r,-7- and 
6,;-, and the elastic and plastic strain rates with yij and <pjj, is consistent with the macroscopic 
analysis given earlier provided that we understand that it is the time average of these quantities 
that must obey the corresponding macroscopic equations and inequalities. For example, the 
plastic 'rate-work' equation (47) can fluctuate about zero, and therefore violate equation (16) 
on an atomic time scale. However, the time integral or ensemble average of equation (47) obeys 
equation (16). This is consistent with the 'local state hypothesis' [8], which presumes that the 
thermodynamic state of the material at a given point and at a given instant of time depends 
only on the values of certain variables and not on their time-derivatives. This is equivalent 
to assuming that the system evolves as a series of equilibrium states, consistent with our 
assumption of a slow time variation of the reference lattice vectors and with the 'coarse-grained' 
view of the simulation representing a small interior region of material. Also, the inclusion of the 
strain threshold is necessary for the elastic and plastic powers to correspond to reversible and 
irreversible processes. Physically, specifying the connection of these two limiting ensembles 
with a relaxation time and strain threshold amounts to 'bootstrapping' a constitutive model 
for the material being simulated. However, the only deformations possible within the current 
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formulation are homogeneous, from the continuum point of view. Also, all the dissipative 
quantities in the simulation are not predicted, but are treated as parameters of the system 
through the specification of the relaxation time and threshold. The actual physical pathway 
responsible for the stress relaxation cannot be addressed within the present phenomenological 
formalism. 

This raises the more fundamental question of whether it is possible to dissipate the 
work required to include the new phase through some specific physical mechanism. Real 
systems accommodate the inclusion of a new structural phase and dissipate strain energy on 
a very large length scale by forming interfaces—typically, slip or twin interfaces—in non- 
homogeneous distortions which effect the strain relief [20]. However, all previous molecular 
dynamics methodologies involving variable simulation cell shape and based on rigorous scaling 
arguments have been essentially homogeneous [1-7,13]. In another article [21] we present an 
inhomogeneous method that incorporates the formation of slip interfaces. 
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Abstract. A model of sintering by coupled surface diffusion and grain-boundary diffusion is 
presented, which is based on the numerical simulation of interparticle neck changes. This model 
is used to investigate the bulk viscosity of particle aggregates through densification. The results 
obtained suggest that a sintering powder has a Newtonian behaviour. The neck size is found to 
be the parameter that better controls the viscosity. However, as density is the most convenient 
parameter to be introduced in constitutive equations, two expressions of viscosity against density 
are proposed for the cases when surface diffusion is faster or slower than grain-boundary diffusion. 
It is shown that the models proposed in the literature for the initial sintering stage predict the same 
evolution as numerical results in the case of slow surface diffusion, even at high density. On the 
other hand the models proposed for the intermediate stage predict the same evolution as numerical 
results in the case of fast surface diffusion, even at low density. 

1. Introduction 

Modelling of the sintering of metal or ceramic powders has been extensively developed in the 
few past decades [1,2]. Two approaches have been proposed. Physical models are based on the 
description of the mechanisms arising in the material during sintering [3-5]. Most often such 
a description requires a drastic schematization of the microstructure and a simplification of 
the mechanisms involved. Thus this approach is not efficient for the quantitative prediction of 
the behaviour of real materials. However, it can allow understanding the physics of sintering, 
identifying the main operating phenomena and anticipating the microstructural evolution of the 
material. The second method consists of fitting analytical equations directly from experimental 
data [6]. Such a phenomenological approach, based on the behaviour of the real material, seems 
to be more useful for practical applications. 

Investigating the effect of stresses on the sintering process becomes more meaningful as 
new problems are tackled, such as pressure sintering processes, sintering of composite materials 
[7], analysis of shape changes due to a heterogeneous green density field [8-10]. A constitutive 
equation describing the response of the material to thermo-mechanical loading is then required. 
The phenomenological approach is still adapted to this purpose. However, the experimental 
data are necessarily limited since testing the mechanical behaviour of powders in sintering 
conditions (high temperature, controlled atmosphere) is delicate. For example, investigating 
the densification kinetics under low isotropic pressure is almost impossible since it would 
require canning the powder within a soft material that supports high temperature and does 
not hinder the densification of the powder. Thus physical modelling is certainly beneficial for 
completing the experimental information or extrapolating it to unexplored mechanical loading 
cases. This is the main motivation of this paper, which will present a model developed for 
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investigating the bulk viscosity of particle aggregates during sintering. With this model we 
will investigate the evolution of viscosity through densification. Also, we will try to verify if 
the viscosity is independent of pressure, i.e. if a sintering powder behaves as a Newtonian fluid. 
Such a property is always assumed in constitutive equations for the reason that diffusion kinetics 
is linear versus stress [8-13]. However nonlinear effects may arise from neck geometry. Also, 
the symmetry between tension and compression is worth being investigated since paniculate 
materials often present asymmetric behaviour. We will show that physical modelling can help 
solve such problems, which are difficult to analyse from experimental data because the material 
constantly changes due to densification and grain growth [14]. 

Sintering models usually include two steps. First the evolution of contact between two 
particles is modelled in terms of shrinkage and area growth. For this purpose analytical 
or numerical methods can be used, depending on whether a rough description of particle 
geometry is sufficient or not. Classical models assume simple interparticle neck geometry 
or pore geometry and uncoupled sintering mechanisms [15]. To describe more realistic 
geometry and take into account several mechanisms simultaneously, numerical techniques 
are necessary [16,17]. The second step of the modelling process consists of deriving the 
macroscopic deformation of the sintering body from interparticle contact evolution. Once 
again analytical or numerical methods are possible. For a homogeneous powder that does 
not exhibits significant rearrangement, analytical 'homogenization' expressions have been 
proposed. For more complex problems, 'discrete element methods', based on the numerical 
simulation of random particle assembly, may be required [18-20]. 

The model presented in this paper is based on the numerical simulation of interparticle 
neck changes by coupled surface diffusion and grain-boundary diffusion, which are often the 
preponderant sintering mechanics. An analytical homogenization method is next used to derive 
the densification kinetics. To find the viscosity we applied short loading sequences during 
sintering, as performed by Cai et al [21] for experimental characterization of the viscosity of 
alumina powder. Analytical expressions are proposed to describe the evolution of viscosity as 
function of density. The numerical results are finally compared with the predictions of several 
models. 

2. Basic equations and methods 

2.1. Two-sphere problem 

Two identical spheres of radius R are in contact through a plane circular contact of radius 
x, which is treated as a grain boundary (figure 1). Since the system is symmetrical about 
the axis perpendicular to the contact, the cylindrical coordinates (r, z) are used. A curvilinear 
coordinate s is also defined along the intersection of the particles' free surface with the meridian 
plane. The dihedral angle at the neck is f. The gradient of the chemical potential in the contact 
results in a radial diffusion flux at the edge of the neck, jr, defined as the volume of material 
passing out of the grain boundary through a unit area in unit time. This radial flux is classically 
calculated as 

*-^(»»«"-'H!)) 
where Z)g is the diffusivity in the grain boundary, Q is the atomic volume, k is Boltzmann's 
constant, ys is the surface energy, T is the absolute temperature, a is the average compressive 
stress on the neck and K(x) is the curvature at the edge of the neck [22]. Curvature is defined 
to be positive when the centre of curvature is outside the particle. The total volume of material 
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Figure 1. Schematic diagram of particle contact. 

delivered to the edge of the neck in unit time is then 

V = 2nxSgjr(x) (2) 

where 5g is grain-boundary thickness. The shrinkage rate, i.e. half of the rate of approach of 
one particle towards the other, is 

w 
2<5gyV 

(3) 

The matter flowing out of the grain boundary is redistributed on the free surface of the 
particle by surface diffusion. This diffusion flux, js, which is entirely in the meridional 
direction, is expressed as: 

7s 
SsDsQys dK 

(4) kT      As 

where <5S is the thickness of the surface layer in which diffusion takes place, Ds is the diffusion 
coefficient on the surface, K(s) is the curvature of the free surface. The surface flux results in 
the deposition or removal of material leading to a displacement rate normal to the surface: 

1 d(r/s) 
ds (5) 

From this equation a new particle boundary created by diffusion during any time increment 
can be calculated. 

The grain-boundary diffusion analysis (equations (1) and (2)) and the dihedral angle at 
the neck provides two boundary conditions. Another condition is obtained from the following 
assumption: the angle between the tangent to the surface and r axis is equal to n/4 and this 
angle is forced to remain n/4 for that point, as if there was a band of contact all around the 
equator of the particle. This condition is supposed to represent, on average, the surrounding of 
a contact in a random packing of spheres during sintering. We assume that it is realistic from 
0.64 to 0.9 of relative density, which corresponds to a coordination number between 7 and 10 
[23]. For higher densities, the interactions between neighbouring contacts become important 
and this model is certainly not relevant. 

This problem of neck deformation has been solved with a one-dimensional finite-difference 
calculation using a curvilinear array of points representing the current shape of the free-surface 
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particle, as proposed by Nichols and Mullins [16] and Bross and Exner [17]. Details of the 
numerical analysis can be found elsewhere [24]. In these calculations a critical parameter is 

<5SZ)S 

hDz 
(6) 

This parameter will be referred to as the 'diffusion ratio' in the following. 

2.2. Homogenization 

Consider an isotropic homogeneous aggregate of monosized spherical particles with radius 
R, which is sintered under an isotropic external pressure p, possibly varying with time. It is 
assumed that at every time all interparticle contacts within the aggregate experience the same 
contact force and deform with the same neck growth and shrinkage rates. The densification 

rate can simply be calculated from the shrinkage rate, w: 

°=3-^- (7) 
D        R-w 

which is integrated as 

Z) = ö0(l-^)""3 (8) 

where D0 is the initial relative density, about 0.64 for random close packing. The average 
compressive axial stress transmitted to a neck is classically expressed as [25] 

a = z5T>p (9) 

where Z is the number of necks per particle, which was calculated as a function of D by 
Arzt [23]. The relation found by Arzt for the densification by diffusion mechanisms can be 

approximated as Z = 11D. 
These equations have been used to deduce the densification kinetics under any sintering 

cycle with constant or varying pressure from the numerical model of neck deformation. At 
time t, consider the actual neck geometry, characterized, in particular, by the neck radius x, and 
the shrinkage w. The relative density of the aggregate is deduced from w through equation (8). 
The external stress acting on the neck is calculated from equation (9) with the actual value of 
the pressure, p(t). Then the numerical model is run to compute the free-surface changes and 
the shrinkage occurring during time increment, St. The average shrinkage rate during St is 
calculated and the average densification rate is deduced through equation (7). This process is 
iterated so that the densification rate is obtained as a function of time. 

3. Numerical results 

3.1. Free sintering 

Free sintering was simulated first. The dihedral angle was assumed to be equal to 130°. A 
study of the influence of the dihedral angle can be found in [24]. The calculation started with 
an initial neck radius x = 0.01 R and a surface that was spherical everywhere, except in the 
vicinity of the neck. It was stopped when the relative density reached 0.9. Four values of the 
diffusion ratio were investigated, 0.1, 1, 10 and 100. Note that the case ds = 0.1 was run with 
much difficulty. It is difficult to redistribute the matter arriving at the neck with such a low 
surface diffusion coefficient. To perform a simulation it was necessary to start from a higher 

neck radius, x =0AR. 
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Figure 2. Evolution of the free surface contour during free sintering with ds = 1. 
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0.6 

Figure 3. Curvature in the meridian plane as a function of the curvilinear coordinate during free 
sintering with ds = 1. The values for D = 0.64 and j «* 0 are off-scale. 

Examples of the free-surface contour obtained at seven values of the density during 
sintering with ds = 1 are shown in figure 2. For the final density (D = 0.9), the neck 
radius is 0.6R and the shrinkage is OAR. Figure 3 shows the curvature in the meridian plane 
as a function of curvilinear coordinate. For the initial density, the curvature is very high (off- 
scale) close by the neck and equal to -l/R, everywhere else. During densification, curvature 
gradients progressively vanish. From D = 0.8, the curvature is almost uniform along the free 
surface. 

The densification rates obtained for each value of the diffusion ratio are represented in 
figures 4 and 5 as functions of two parameters, respectively, the neck radius, which is the 
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Figure 4. The densification rate as a function of the neck radius: effect of the diffusion ratio and 
comparison with equation (16). 
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equation (17) 
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Figure 5. The densification rate as a function of the increase in density: effect of the diffusion 
ratio and comparison with equation (17). 

microscopic parameter characterizing the progress of sintering, and the relative density, which 
is the only possible macroscopic parameter. As a normalization, the densification rate was 
multiplied by the characteristic time of grain boundary diffusion, defined as 

kTR4 

(5gDgfiys 

(10) 

As suggested by physical models (see section 4), the initial density was subtracted from the 
density in figure 5 and logarithmic scales were used in both figures. 

Figure 4 shows that the densification rate decreases with increasing neck radius, following 
a power law with an exponent between -5 and -4. There is almost no influence of the diffusion 
ratio on this evolution. Figure 5 is more complicated. Two stages are clearly observed. At low 
density the densification rate strongly decreases as density increases. It is higher when ds is 
lower and apparently reaches a limiting curve as ds reaches its lowest values. At a certain value 
of density, we observe a sharp transition leading to a gentle decrease of the densification rate. 
During this second stage, which Svoboda et al [26] named quasi-equilibrium sintering, the 
curvature is quasi-uniform along the free surface of the particles. The normalized densification 
rate at a given density is then almost independent of the diffusion ratio, i.e. the densification 
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Figure 6. Comparison of densification rate curves obtained during free sintering and sintering with 
compressive or tensile loading sequences for ds = 1. 

rate is proportional to £>g and independent of Ds. The transition between both stages appears 
at a lower density when the surface diffusion is faster. For example, it occurs at D = 0.84 
when ds = 0.l and between 0.75 and 0.8 when ds = 1, which is consistent with figure 3. For 
the highest diffusion ration, ds = 100, the second stage starts at a relative density of about 
0.65. At this density the neck radius is already equal to 0.4257?. It means that most of the 
neck growth occurred by surface diffusion only, without significant densification. 

3.2. Sintering with loading sequences 

To evaluate the viscosity of a particle assembly at various densities, short isotropic loading 
sequences were introduced during sintering simulations. This pressure was either positive 
(compression) or negative (tension). Examples of results are shown in figure 6. The 
densification rates obtained during three simulations with ds = 1 are compared: free sintering, 
sintering with eight compressive loading sequences and sintering with eight tensile loading 
sequences. The loading was applied during a prescribed density interval +0.01 or -0.01. The 
application of a pressure, p = 3ys/R, leads to an instantaneous increase in the densification 
rate. When the stress is removed, the densification rate suddenly lowers to about the free- 
sintering curve. This suggests that the effect of the former loading sequence on the sintering 
process rapidly vanishes. The viscosity, n, can directly be deduced from the jump in the 
densification rate, A0/D) when the loading is applied or removed: 

r)= 1 . (ID 
A(D/D) 

When a 'tensile pressure', p = -3ys/R, is applied, the densification rate becomes negative 
and thus the density decreases. It proves that this pressure—in absolute value—is higher than 
the sintering stress, usually defined as the opposite of the isotropic stress that should be applied 
to get no densification. After the end of the first tensile loading, there is a significant transitory 
period before the densification rate returns to the free-sintering curve. This transitory effect is 
much less pronounced for the following loading sequences, which are applied during 'second 
stage' sintering. 

Similar simulations were performed with several values of ds, between 0.1 and 100, 
and several values of p, between -3ys/R and I0ys/R. Figures 7 and 8 show the viscosity 
multiplied by rsR/ys as function of x and D - D0, respectively. Each curve corresponds 
to particular values of ds and p, which makes the drawing somewhat confused. However it 
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Figure 7. Bulk viscosity as a function of the neck radius: effect of the diffusion ratio and comparison 
with equation (20). 
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Figure 8. Bulk viscosity as a function of the increase in density: effect of the diffusion ratio and 
comparison with equations (12), (13) and (21). 

clearly shows that the influence of the stress is insignificant. Whatever the stress, whether it 
is tensile or compressive, the viscosity is about the same at a given neck size or density. In 
figure 7 it appears that the viscosity varies as the neck size to a power between four and five. 
The viscosity is almost independent of ds, expect for ds = 0.1. In this case the viscosity is 
twice as large for the same neck radius. In figure 8, two zones can be distinguished, as in 
figure 5. In the first sintering stage (high-curvature gradients), the viscosity increases with 
increasing relative density and diffusion ratio. In the second stage (quasi-uniform curvature), 
it is almost independent of the diffusion ratio. For the highest value of ds, only the second 
stage is observed because curvature gradients disappear early during the densification. 

Two analytical expressions were adjusted to these data (figure 5). The following power 
relation corresponds to ds = 0.1 (slow surface diffusion): 

K :0.8Tg}/S'- -^ 
R 

-(D-DoY 

whereas an exponential law describes the case ds = 100 (fast surface diffusion): 
-5Tg^s    7.16D 

R 
K = 3.610" 

(12) 

(13) 



Modelling bulk viscosity 385 

4. Comparison with physical models 

Many models have been proposed in the last few decades to describe densification rate and 
bulk viscosity during sintering by grain-boundary diffusion. Most of these models distinguish 
between the initial stage of sintering, when interparticle necks are small, and the final stage, 
when pores are isolated from each other. Some authors have also proposed an intermediate 
stage with interconnected cylindrical pores. In the following we first describe and adapt the 
model by Coblenz et al [15], which has the advantage of being simple. We will then examine 
the prediction of other models. 

When grain-boundary diffusion is the main sintering mechanism, Coblenz et al [15] 
proposed the following approximations for free sintering, with the assumption w <SC x <£ R 
(initial stage): 

K(x) = ^r = -. (14) 
xl      w 

From equations (1), (3) and (10), with y = 0 and \// = 180°, we obtain 

■      l6R5      R3 nv W  =   ——   =  —r— . (15) 

Using equations (7) and (8) and the assumption (D - D0)/D0 < 1, we deduce the free 
sintering densification rate as a function of x: 

^ = <*£ (16) 
DJS      x% 

or as a function of D: 

D\ 21DI (17) 

D)&      (D-D0)
2
h' 

This relation is supposed to be valid for a small neck, let us say less than R/4, and a relative 
density close to D0, let us say 0.64 < D0 < 0.7. Figures 4 and 5 show that equations (16) 
and (17) overestimate the densification rate calculated by numerical simulation, although the 
predicted variations as l/x4 and (D — Do)"2, respectively, are reasonable up to large necks. 

The Coblenz model can easily be adapted to take into account an isotropic external 
pressure. If an average compressive stress, a, is applied upon the contact during sintering, the 
shrinkage rate is obtained from equations (1), (3) and (14): 

R3   (      x2a\ 0,= (l+ ). (18) 
w2Tg V      4RysJ 

Using equations (7) and (9) and assuming w <SC R, one gets 

D      \Djs\      ZDyJ 
Finally, with Arzt's approximation [23], Z = WD; D «a D0; and with equation (14), the 
viscosity is written as 

r, = P- = ^^V. (20) 
D/D - (D/D)s 48/?5 

Using equation (15), we obtain an alternative expression: 

,= l-^(D-D0)\ (21) 
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Figure 9. Comparison of equations (12). (13) and (21) with the predictions of various models. 

Both expressions are compared with the numerical results in figures 7 and 8, respectively. 
Although the modified Coblenz model is supposed to be valid only for small neck radii, it 
correctly predicts the evolution of the viscosity as a function of the neck radius (figure 7) up 
to x = R/2, except for the lowest value of ds. The evolution of viscosity against the relative 
density (figure 8) is not so well described, but the increase of t] with (D — Do)2 is verified 
during the first stage. 

Finally, in figure 9 we plot, together with the curves resulting from equations (12), (13) 
and (21), the prediction of other models of sintering by grain-boundary diffusion. McMeeking 
and Kuhn [12] described neck growth and shrinkage during the initial stage, assuming that 
surface diffusion is fast enough to redistribute instantaneously the matter flowing out of the 
grain boundary. Riedel et al [27] obtained a constitutive equation for the intermediate stage 
from equilibrium particle surfaces computed for several values of the coordination number 
[26]. Venkatachari and Raj [14] modelled the closing of isolated spherical pores. Figure 9 
shows that initial-stage model predicts the same type of evolution as the numerical results 
obtained with slow surface diffusion, whereas intermediate- and final-stage models give the 
same type of evolution as the numerical results with fast surface diffusion. 

5. Discussion and conclusions 

The proposed model mixes numerical and analytical methods for analysing the densification 
kinetics of a particle assembly during solid-state sintering by coupled grain-boundary diffusion 
and surface diffusion. In this paper it has principally been used to investigate the evolution of 
bulk viscosity through densification. 

Preliminary free-sintering calculations showed that the main parameter driving the 
densification is the neck radius. For a given neck radius the densification rate is proportional to 
the grain-boundary diffusion coefficient and independent of the surface diffusion coefficient. 
The evolution of the densification rate as a function of relative density shows two successive 
stages. In the first stage, curvature gradients on the free surface of the particles are significant 
and the densification rate continuously drops as the particle geometry changes. During 
the second stage the curvature is quasi-uniform and the densification rate gently decreases. 
The transition between both stages occurs at a lower density when the surface diffusion is 
faster. 
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Bulk viscosity was estimated at various densities by introducing compressive or tensile 
loading sequences during sintering. It appeared that the viscosity was almost independent of 
the stress, whether it was compressive or tensile. This confirms that the material behaviour is 
Newtonian, as verified by Venkatachari and Raj [14] from data obtained with alumina powder. 
Once again the neck radius is the parameter which better controls the viscosity. The viscosity 
varies as the neck radius at a power between four and five. Surprisingly, the Coblenz model 
for grain-boundary diffusion, which was modified to take into account a external pressure, 
compared rather well with these results, even when particle geometry was far away from 
the geometry assumed in this model. Concerning viscosity against density evolution, two 
stages are observed as for free sintering. In the first stage the viscosity varies as (D — Do)2, 
as predicted by the modified Coblenz model, whereas in the second stage we adjusted an 
exponential law that gives about the same type of evolution as the models proposed in the 
literature for intermediate- and final-stage sintering. 

At first sight, it seems surprising that the models describing initial-stage sintering by grain- 
boundary diffusion better match the numerical simulations when surface diffusion is slower, 
whereas these models assume that surface diffusion is not a limiting mechanism. Actually, 
when surface diffusion is slow, interparticle necks grow mainly by grain-boundary diffusion 
and curvature gradients remain significant; hence the assumptions of initial-stage models are 
relevant up to high densities. On the other hand, when surface diffusion is fast, it causes neck 
growth without significant densification and curvature gradients rapidly disappear. Grain- 
boundary diffusion starts being active in a second step, when neck geometry is close to that 
assumed by intermediate- or final-stage models, although density is still low (near the initial 
density). 

Indeed, the above results cannot directly be compared with experimental data because the 
microstructure of real materials is much more complex than that assumed in the model and, also, 
direct measurement of bulk viscosity is difficult. However, we believe that our results can be 
helpful for the formulation of constitutive equations and for the analysis of experimental data. 
Our study confirms, in particular, that the description of the viscous behaviour of a sintering 
powder with a Newtonian law is reasonable. Also, it suggests different kinds of evolution of 
the viscosity as a function of the relative density depending on the diffusion ratio. However, 
we found that the relative density, which is the only variable describing powder changes during 
sintering in classical constitutive equations, is not the most interesting parameter. Neck radius 
appears to be more appropriate, but this is a microscopic parameter, which is difficult to estimate 
in real systems, whereas relative density can be quite easily measured. 
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Abstract. The structures and energetics of Cu-Au alloys over a wide range of temperatures are 
studied using a combination of quasi-harmonic (QH) lattice dynamics and Monte Carlo (MC) 
simulations at constant temperature and constant pressure. The many-body potential used is fitted 
to room-temperature experimental data taking vibrational contributions into account. Transitions to 
the disordered phases are studied using MC simulations in which not only anisotropic deformation 
of the unit cell and atomic movements are allowed, but also exchange of atoms of different 
type is explicitly considered. Our calculations reproduce all characteristic features of the order- 
disorder transitions, including the characteristic peaks in the plots of heat capacity as a function of 
temperature. 

1. Introduction 

Cu-Au alloys are an interesting 'model' system due to the existence of three intermetallic 
compounds, namely CU3AU, CuAu and CuAu3, the temperature-induced order-disorder 
transitions and the capability of forming thermodynamically stable long period superlattice 
structures. Accordingly, a broad range of properties have been studied for this system, 
both experimentally and theoretically [1-8], and for both ordered and disordered phases. 
Nevertheless few workers have considered the three intermetallic solids, namely CU3AU, 
CuAu and CuAu3, using the same theoretical approach and identical interatomic potentials. 
Several authors have restricted themselves to only one of these compounds (see, for instance, 
[1-4]), and, because of the empirical origin of the interatomic potentials employed, there 
is no guarantee that these potentials are transferable to the other intermetallic compounds. 
In addition little attention has been paid to the relative stability of the three stoichiometric 
compounds [5-7]. Accordingly, in this paper we study the relative stability of the 
intermetallic solids CU3AU, CuAu and CuAu3. We find that the potentials available in 
the literature are not suitable for this purpose and so develop a new potential, which 
is then used to study the energetics of the ordered and disordered phases and the main 
characteristics of the order-disorder transitions. This is the main aim of the present 
work. 

A potential commonly used is that proposed by Foiles et al [8]. The parameters of this 
potential have been obtained by fitting the results of static calculations to the room-temperature 
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elastic constants, lattice parameters, cohesive energy and vacancy formation energies of the 
pure metals, and to the heats of solution of binary alloys. Hence, when this potential is used 
to calculate these same properties at finite temperature, it is clear that they will not reproduce 
the experimental data to which they were fitted, due to the neglect of vibrational effects during 
the fitting procedure. Other potentials, for instance those proposed by Dumez et al [6] and 
by Cai and Ye [5], have been fitted to low-temperature data using only static calculations, 
and so neglecting zero point vibrational effects. In order to make the calculations consistent, 
here we use a potential in which the parameters are obtained by fitting to low-temperature 
experimental data taking vibrational contributions into account. This is now possible because 
we can calculate thermodynamic and elastic properties of alloys at finite temperatures using 
quasi-harmonic (QH) lattice dynamics in a very efficient and rapid way as implemented in 
the computer code EAMLD [9]. We then use both QH lattice dynamics and Monte Carlo 
(MC) simulations to study the structures and energetics of Cu-Au alloys over a wide range 
of temperatures. The ordered and disordered phases of CujAu, CuAu and CuAiij are studied 
using MC simulations at constant temperature and pressure, in which the explicit exchange of 
atoms of different type allows the transition to the disordered state to take place in a feasible 
amount of computer time. 

Space restricts our comments here to previous work which has considered the three 
intermetallic compounds, CU3AU, CuAu and CuAu3, and atomistic models that are physically 
different, neglecting small differences from previous model potentials due to the use of slightly 
different parametrization schemes. Ackland and Vitek [10] and Vitek et al [11] have also 
proposed a potential model for the alloy system Cu-Au. However, this model uses cubic splines 
to represent the pair potentials and so cannot be used to study the temperature dependence of the 
lattice parameters, heat capacities or phonon spectra in general, which depend on higher-order 
derivatives of the potentials. 

In the ordered phase, CuAu has a tetragonal structure and consists of alternate planes of 
Cu and Au atoms perpendicular to the c-axis, as shown in figure 1. The observed structure 
can be thought of as a distorted face-centred cubic lattice, in which the experimental value 
of c/a ~ 0.926 [12] is mainly a consequence of the different size of the Cu and Au atoms. 
Although Cheong and Laughlin [13] have shown that the thermodynamic stability of the 
ordered phase of CuAu may be significantly influenced by this tetragonal lattice distortion, the 
preliminary calculations of Cai and Ye [5] have been carried out with c/a — 1. Consequently, 
a further objective of this paper is to study the importance of the tetragonal distortion on the 
relative stability of CuAu. 

Figure 1. Structure of CuAu in the ordered phase. In the disordered phase all lattice positions are 
occupied at random by Cu or Au atoms. 
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2. Relative stability of the intermetallic solids 

In figure 2 we show the enthalpies of mixing calculated from the results of atomistic simulations 
by a number of authors [5-8] together with the experimental values reported by Smith [14] 
extrapolated to T = 0. These have been calculated from the reported cohesive energies 
according to 

Affmix(CuxAUl_x) = ff (Cu,Auj-,) - xH(Ca) - (1 - x)H(Au). (1) 
It is clear that the agreement of these calculations with the experimental values is not 
satisfactory.   In the static limit, AHm AGmix and it can be seen that the calculations 
of Cai and Ye and Dumez et al predict, in this limit, that CuAu3 is unstable with respect to 
disproportionation to CuAu and Au, in disagreement with experiment. A similar result is 
obtained from the results obtained from the calculation of Foiles et al [8], although in this case 
the difference in energy involved is too small to allow a definite conclusion. At this stage, it 
is not clear if this problem is a limitation of the static approximation, the interatomic models 
proposed or the particular potentials used. 
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Figure 2. Enthalpies of mixing obtained from the static cohesive energies calculated by Dumez 
et al [6] (full squares), Cai and Ye [5] (open squares), Wei et al [7] (full circles), Foiles et al [8] 
(open circles) and from experimental data (crosses). The curves have no physical meaning and are 
included only as a guide to the eye. 

Wei et al [7] have carried out first-principles calculations of the ordered structures and 
energetics of Cu„ Au4_„ (0 < n < 4). In table 1 we list their calculated values for the cohesive 
energies of Cu„ Au4_„. From these data we can calculate the change in internal energy for the 
reaction 

2Au(s) + CuAu(s) <—> CuAu3(s) (2) 

to be equal to +1.9 kJ mol-1, again predicting CuAu3 is unstable with respect to 
disproportionation to CuAu and Au in disagreement with experiment. The relative stability 
of CuAu3 thus appears to be a very stringent test of both interatomic potential and ab initio 
first-principles calculations. 



392 G D Barrera et al 

Table 1. Cohesive energies of Cu„Aii4_„ (0 ^ n ^ 4) calculated from the results of Wei et al [7]. 

Cu CU3AU       CuAu CuAuj       Au 

A£(kJmor')   -417.782   -421.641   -424.536   -421.641   -419.711 

3. Methods 

3.1. Interatomic potentials 

It is well known that the use of two-body interatomic potentials has serious limitations, for 
example the impossibility of accounting for the observed failure of the Cauchy relations or 
the differences between vacancy and cohesive energies. These limitations can be overcome 
by using many-body potentials such as those proposed by Daw and Baskes [15], Finnis and 
Sinclair [16] and Ercolessi et al [17]. Although the physical motivation in proposing each of 
these potentials is different, the crystal energy in all of these models can be written as 

£s,a, = £ F'(f>i) + \ E X>AV0 (3) 
< '     j 

where, within the embedded atom method, F,(p,) is negative and represents the energy of 
'embedding' atom / in the electronic density p, created by all other atoms in the crystal, and 
(pij is the core-core repulsion between atoms i and j, which is assumed to depend only on the 
type of atoms i and j and the distance between them. The electron density p, is assumed to 
be the sum of the electron densities of all other atoms at the nucleus of atom i: 

A- = I><ry> (4) 

J 

where fj(rij), assumed to be isotropic about atom j, is the electron density due to basis 
functions centred on atom j at a distance rtj. The prime on the summations in equations (3) 
and (4) indicates that terms with rtj = 0 are not included. This model has the advantage that it 
includes certain many-body contributions to the crystal energy while the computational effort 
is not as large as in those approaches where angular contributions are explicitly included. 

3.2. Quasi-harmonic lattice dynamics 

In the quasi-harmonic approximation it is assumed that the Helmholtz energy of a crystal, F, 
at a temperature T can be written as the sum of static and vibrational contributions, 

F = ESM + Fvib(T). (5) 

Estat is the potential energy of the static lattice in a given configuration and Fv\b is the sum of 
harmonic vibrational contributions from all the normal modes. For a periodic structure, the 
frequencies vj(q) are obtained by diagonalization of the dynamical matrix in the usual way 
[18], so that Fvib is given by 

Fvib = J2T, öh^iq)+kT ln(1 ~ e"v'/kT) (6) 

where the first term is the zero-point energy at T — 0. For a macroscopic crystal the sum 
over q becomes an integral over a cell in reciprocal space, which can be evaluated by taking 
successively finer uniform grids until convergence is achieved. Vibrational frequencies do not 
depend on temperature explicitly, but do so implicitly through the position of the atoms in the 
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unit cell which determines the dynamical matrix. The free energy thus obtained is a function 
of both some external coordinates, TZai, which are taken here as the lattice parameters (a for 
a cubic crystal, a and c for a hexagonal crystal, etc) and a set of internal coordinates which 
gives the position of the atoms within the unit cell 7?.int = {r}; this whole set of coordinates 
is denoted collectively as K. For a given temperature and applied pressure, Pext, the crystal 
structure is that which minimizes the availability G [19]: 

G(K) = F{11) + PextV(^ext). (7) 

At the equilibrium configuration P = Pext and the availability equals the Gibbs energy: 

G = G = F+ PV. (8) 

A particularly efficient method to minimize G is described in detail elsewhere [9]. 

3.3. Monte Carlo simulations 

We have carried out two different types of Monte Carlo simulations, with and without atom 
exchanges, denoted as MC and MCX, respectively. To facilitate comparison with experiment, 
both of these were carried out at constant temperature and constant pressure. 

In the first approach, which we call MC, vibrational effects are taken into account by 
allowing random moves of the atoms, chosen at random, in the range [—rmax; rmax]. To 
determine whether the displacement is accepted or rejected, the Metropolis algorithm is used. 
In order to carry out the simulation at constant pressure, random changes in the volume, for 
cubic crystals, or in the lattice parameters a, b and c, for orthorhombic crystals, are also made 
and the Metropolis algorithm is used again to decide whether to accept or reject the attempted 
distortion of the unit cell. 

In order to study the order-disorder transition of Cu-Au alloys it is crucial to sample 
different atomic configurations. Allowing both for atom displacements and distortions of the 
unit cell as indicated above, it is possible to study both the pure metals and the ordered alloys. 
However, in this way, the ordering of the alloy is maintained at temperatures much higher than 
the observed transition temperature, usually up to temperatures very close to the melting point. 
A better sampling of different atomic configurations can be obtained by also exchanging atoms 
at random, and accepting or rejecting the new configurations according to the usual Metropolis 
algorithm. 

The maximum displacement for the atoms as well as the maximum changes in the volume 
or lattice parameters are determined during the 'equilibration' run in such a way as to produce 
an acceptance rate of approximately 0.3. Detailed balance is achieved, at any stage of the 
simulations, by deciding whether to carry out an atom displacement, a cell distortion or an 
exchange at random with a probability of N: 1:1, respectively, where N is the number of atoms 
in the simulation box. In order to get well equilibrated starting configurations, especially for 
the disordered alloys, it is necessary to carry out the equilibration runs for approximately 106 

steps. A typical number of different configurations sampled is 107. 
By carrying out simulations with and without atom interchanges it is then possible to 

estimate the effects of the disorder on the calculated thermodynamic properties. Here we 
present results for the lattice parameters, enthalpies and heat capacities as a function of 
temperature, for a wide range of temperatures. Heat capacities are calculated using standard 
formulae from fluctuation theory [20]. 
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4. Applications: Cu-Au alloys 

4.1. Parametrization 

One aim of this work is to verify if a simply potential of the EAM form is capable of reproducing 
the main features of the order-disorder transition of Cu-Au alloys as well as giving a suitable 
description of the relative energies of different intermetallic compounds. For this reason, we 
have chosen to use a simple potential form. For the electronic densities we use exponential 
functions: 

/,(#■) = /i;exp(-r/<7;) (9) 

with different parameters Aj and or? for each metal (j = Cu, Au) and with a cut-off of 6.0 A. 
The repulsive potential is also assumed to have the simple form 

<j>ij(r) = Bijexp(-rij/a;j) (10) 

with parameters Btj and a]- for each type of interaction (Cu-Cu, Au-Au and Cu-Au). For the 
embedding energy we use 

Fj(Pj) = -Cj^P] (ID 

again, with different parameters C, for each atom type. 
For pure Cu, five parameters need to be determined: Z?cuCu, °cuCu< ^cu, "a, ancl Ccu- 

Because the energy of any given configuration depends only on CCui/^cii an^ not on tne 

separate values of ACu and Co,, only four of these parameters can be determined by fitting to 
properties of the pure metals. Without loss of generality, we take Ccu = 1- The remaining four 
parameters are fitted so as to reproduce the experimental lattice parameter, sublimation energy, 
elastic constants and frequencies of vibration of pure Cu at the X-point at room temperature. 
In table 2 we show the experimental data used in the fitting together with the values obtained 
from the present model. With this simple model it is not possible to reproduce the experimental 
values exactly. The same procedure was followed for Au. Although the parameters Ccu and 
CAU can be taken as 1 for the pure metals, the energies of Cu-Au alloys depend on their relative 
values. Here, we take Ccu = 1 while the parameter CAu, together with the cross interaction 
parameters BcuAu and a£uAu, are fitted to reproduce the lattice parameters a and c and the 
sublimation energy of CuAu(I) at room temperature. Experimental and calculated values are 
given in table 2. In table 3 we collect together the parameters of the present potential. 

Inclusion of the frequencies of vibration in the fitting procedure proved to be necessary 
in order to obtain a good description of the phonon spectra.   Without this, the resulting 

Table 2. Experimental data at 298 K used to determine the model parameters and corresponding 
calculated values. 

Cu Au CuAu 

Experiment Calculated Experiment Calculated Experiment       Calculated 

a (A) 3.6150 3.6149 4.0785 4.0799 3.966                3.966 

c(k) 3.673                3.673 

AGsl,b (kJmol-1) -350.938 -350.936 -392.773 -392.766 -380.810         -380.810 

Cu(GPa) 170.0 165.9 192.5 185.7 —                    — 
C,2 (GPa) 122.5 122.7 163.0 150.2 —                    — 
C44 (GPa) 75.8 72.6 42.4 48.27 —                    — 
ur(X) (THz) 5.09 5.06 2.75 2.48 _                    _ 
vL(X) (THz) 7.20 7.50 4.61 3.54 —                    — 
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Table 3. Parameters of the potential model used in this work. 

i/j BijieV)       crfjik) At <r£ (Ä) C; (eV) 

Cu 7076.56     0.241535        188.542     0.536562 1 
Au 14759.9       0.272639     4162.93       0.366085 1.42197 
Cu/Au      10153.2       0.258 268     — — — 

potentials slightly overestimate the vibration frequencies of Cu (by ~10%) and underestimate 
the vibration frequencies of Au by as much as 40%. As a consequence of this, the thermal 
expansion of Au is severely overestimated, leading eventually to a breakdown of the quasi- 
harmonic approximation at ~400 K. This problem is partially solved by including some 
vibration frequencies in the fitting procedure, although it is obvious that this is at the cost of 
a poorer reproduction of the elastic constants. This could possibly be improved by the use 
of a more sophisticated approach, such as the modified embedded atom method proposed by 
Baskes et al [21]. 

The use of room-temperature experimental values in the fitting procedure differs from 
previous work where experimental values have been extrapolated to T = 0. One advantage of 
our procedure is that vibrational effects, including zero point energy contributions, are readily 
taken into account. In addition the precision of measurements at room temperature is usually 
superior to that obtained at low temperatures. When fitting potential parameters using low- 
temperature data and static calculations, corrections due to zero point energy contributions are 
required, but have been ignored by most workers. 

4.2. Structures and cohesive energies ofCu-Au alloys 

As a representative example of the temperature dependence of the lattice parameters we show 
the variation of the calculated lattice parameters of Cu and CuAu in figures 3 and 4. Also 
plotted are those calculated from the experimental lattice parameters reported by Pearson [12] 
and the thermal expansion coefficients tabulated by Touloukian et al [22], for Cu, and the 
lattice parameters of CuAu reported by Bjerkelund et al [23], for CuAu. As expected, at low 
temperatures results from QH lattice dynamics and (classical) MC simulations differ due to 
the neglect of quantum effects in the latter. We have verified that using the classical expression 
for the free energy in the QH calculations, 

-"EIX^) o» 
we obtain results in excellent agreement with those from the MC simulations up to temperatures 
near the Debye temperature (ÖD) of each solid (345, 163, 282, 205 and 183 K, for Cu, Au, 
Cu3Au, CuAu and CuAu3 at low temperatures, respectively [24-26]). The importance of 
quantum effects decreases with temperature and above 6>D there is a small range of temperatures 
in each case where QH and MC results are in good agreement. At still higher temperatures 
the QH approximation is less successful because of its neglect of further anharmonic effects 
and it eventually breaks down, as in Au at T ~ 700 K, where the lattice parameter is greatly 
overestimated. 

As mentioned above, an interesting property of Cu-Au alloys is the capability of forming 
thermodynamically stable long period superlattice structures. For instance, CuAu is known to 
exist in two different crystal structures. At low temperatures the structure of CuAu, CuAu(I), 
has the tetragonal unit cell shown in figure 1. Between 658 and 683 K the thermodynamically 
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Figure 3. Cu: lattice parameter versus temperature. The labels Exp, QH and MC refer to the 
experimental data, and the results of the calculations of quasi-harmonic lattice dynamics and Monte 
Carlo simulations, respectively. 
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Figure 4. CuAu: lattice parameters versus temperature. The labels Exp, QH, MC and MCX refer 
to the experimental data, and the results of the calculations of quasi-harmonic lattice dynamics and 
Monte Carlo simulations without and with exchange of atoms of different type, respectively. 

stable structure of CuAu, CuAu(II), has a 40 atom unit cell with a \ (110) antiphase boundary 
on the [100] planes. The energy of formation of this antiphase boundary calculated with our 
model in the static limit is 55.8 mJ m"2, which compares well with the experimental estimates 
[27,28] of 40-60 mJ m"2. No further attempts to consider the superstructures with antiphase 
domains were carried out because this is an effect due to details in the electronic structure of 
the solids that cannot be explained with our atomistic model [29]. 
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Figure 5. Gibbs energies of mixing at 4.2 K and enthalpies of mixing at 800 K of Cu-Au alloys 
versus composition. QH: quasi-harmonic lattice dynamics calculations at 4.2 K for the ordered 
phase. MCX: Monte Carlo simulations with exchange of atoms at 800 K for the disordered phase. 
The curves have no physical meaning and are included only as a guide to the eye. 

All QH lattice dynamics calculations, including those at high temperatures, were carried 
out only on the ordered compounds. The values shown as MC at T = 0 in figures 3 and 4 
correspond to static calculations. These are included in the plots to show that the static values 
are indeed the limiting results of the MC calculations as T ->• 0. The difference between the 
results of the static and QH calculations at T = 0 are due to the zero point contributions. This 
difference is larger for Cu than for Au, due to its smaller atomic mass. The increase in the lattice 
parameters due to quantum effects is of the same order as the entire linear thermal expansion 
between 0 and 300 K. This result clearly highlights the need to include quantum effects at low 
temperatures in cases when quantitative studies of structural parameters are attempted. 

For CuAu, we show in figure 4, in addition, the results of Monte Carlo calculations in 
which interchange of atoms of different types is explicitly included (MCX), as described above. 
The Monte Carlo runs without exchange of atoms (MC) maintain the ordered structures up 
to temperatures very close to the melting point. The transition to the disorder state in the 
MC runs with interchange of atoms produces a rapid change in the lattice parameters of the 
intermetallic solids with increasing T, as shown in figure 4. We cannot expect a discontinuity 
in the lattice parameters as observed experimentally due to the finite size of the unit cells 
utilized in the simulations (256 atoms). Cu3Au, CuAu and CuAu3 transform to the disordered 
state at approximately 370, 430 and 320 K, respectively. In all cases the calculated transition 
temperatures are lower than the experimental values, and we return to this in the next section. 
The differences between the lattice parameters of the ordered and disordered structures of 
Cu3Au and CuAu3 are in good agreement with experiment. The transition to the disordered 
phase of CuAu is particularly interesting because it is associated with a change of symmetry 
in the crystal structure. 

In figure 5 we show the enthalpies of mixing of Cu3Au, CuAu and CuAu3 obtained 
using our interatomic potentials, together with low-temperature experimental data [7] for the 
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Figure 6.   Cu:  Heat capacity at constant pressure versus temperature.   Labels have the same 
meaning as in figure 3. 

ordered solids and high-temperature experimental data for the disordered materials [30]. At 
low temperatures we used QH lattice dynamics, where quantum effects are taken into account, 
to calculate the enthalpies of mixing of the ordered solids. While at high temperatures quantum 
contributions are negligible, the sampling of different configurations is essential, and so we 
determine the enthalpies of mixing using MCX simulations (with exchange of atoms). In 
particular, the enthalpies of mixing of the ordered solids agree very well with the experimental 
data. Although it is important to remember that the cohesive energies of Cu, Au and CuAu 
were used to fit the potential parameters, CuAu3 is now predicted to be stable in agreement 
with experiment, unlike results obtained with previous potentials [5,6]. 

4.3. Heat capacities and order-disorder transitions 

The first investigations of the order-disorder transitions in alloys included measurements of 
heat capacity as a function of temperature. In order to assess the feasibility of calculating 
heat capacities from MC simulations at constant pressure, we carried out MC simulations both 
with and without exchange of atoms of different type, in which the heat capacity was evaluated 
directly from fluctuations in the enthalpy. The results are shown in figures 6 and 7 together with 
those obtained from QH lattice dynamics and experimental data [30]. At low temperatures, the 
importance of quantum effects is much more evident here than in the calculation of structural 
parameters. The results indicated as MC at T = 0 correspond to the classical limit of 3R. 
No physical meaning should be ascribed to the results of classical simulations at temperatures 
below 0D; these are included in the graphs only to show that the correct limiting values of CP 

at low temperatures were obtained. From the plots of heat capacity versus temperature it is 
possible to estimate the order-disorder transition temperatures of Cu3 Au, CuAu and CuAu3 as 
370, 430 and 320 K, which agree with those obtained earlier from the lattice parameter plots, 
and are appreciably lower than the experimental values of 663, 683 and ~500 K, respectively. 
The underestimation of the transition temperatures is not a consequence of the particular 
parametrization used in this work. We have verified that when using different functional forms 
for the electronic densities, the repulsive potentials and/or the embedding function the results 
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Figure 7. CuAu: Heat capacity at constant pressure versus temperature. Labels have the same 
meaning as in figure 3. 

presented here do not change appreciably. Neither does the use of a different cut-off for 
both the electronic densities and the repulsive potentials increase the transition temperatures. 
Previous works, such as that by Polatoglou and Bleris [4] have obtained better agreement 
with the experimental transition temperatures but have used a model in which local relaxation 
and atomic vibration are neglected. We have already shown that these effects are expected to 
decrease the calculated transition temperatures and so the better agreement found with these 
models should be considered fortuitous [31]. 

5. Conclusions 

We propose a new interatomic potential for Cu-Au alloys fitted to room-temperature data, in 
which zero point effects are explicitly accounted for by using QH lattice dynamics calculations. 
This potential compares favourably with previous potentials. There is a good agreement 
between calculated and experimental data of structural and energetic parameters at low 
temperatures. Another distinguishing feature of this new potential is that it gives a good 
description of the tetragonal distortion of CuAu. Our model predicts that CuAu3 is stable with 
respect to disproportionation to CuAu and Au, in agreement with experiment. 

From the calculations of lattice parameters and enthalpies as a function of temperature 
we have established the existence of a small range of temperatures where QH lattice dynamics 
calculations and classical MC simulations agree. This is of great practical importance because 
QH calculations, as opposed to MC simulations, provide a very efficient way of calculating 
entropies and free energies. The values of free energies over the range where both techniques 
agree can then be used as a starting point to calculate free energies of both ordered and 
disordered states as a function of temperature by using thermodynamic integration. This 
provides a relatively simple way of calculating free energies at high temperatures where MC 
simulations are most suitable. 

We have also calculated isobaric heat capacities from the fluctuations in the enthalpy for 
all the solids considered. Our results show that present computational resources are sufficient 
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to reproduce the characteristic peaks in the plots of heat capacity as a function of temperature 
at temperatures near Tc, in spite of the relatively small size of the unit cells employed. The 
most demanding simulations are those for CuAu, where there are two independent lattice 
parameters a and c. In spite of this, the plots of lattice parameter versus temperature show all 
the characteristic features of the transition to the cubic disordered phase. 

The enthalpies of mixing at low temperatures for the intermetallic compounds considered 
here agree very well with available experimental data. The results for the disordered phase at 
800 K, however, reproduce the experimental data only qualitatively. Although the agreement 
with the experimental data is very good for 75% Au, our calculations overestimate the enthalpy 
of mixing at 25% Au by approximately 60%. This is unexpected, particularly considering that 
our potential reproduces correctly the enthalpy of mixing at low temperatures. This clearly 
shows that there is still room for improvement in the quality of the interatomic potentials, even 
for systems as comparatively simple as that considered in this work. 

Our methodology for fitting interatomic potentials using room-temperature experimental 
data should be generally applicable, especially for those systems where low-temperature data 
are scarce or not available. 
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Abstract. Melanophlogite is a naturally occurring SiC^-based clathrate structure which has the 
same structure of type I gas hydrates. Two types of voids are found in melanophlogite. Furthermore, 
as in the case of the gas hydrates, melanophlogite traps gas molecules within the voids. In this work 
we present a joint theoretical and experimental investigation of the CH4 Raman spectra associated 
with the enclathrated CH4 molecules. We find that the Raman intensities of the totally symmetric 
hydrogen stretch modes are significantly perturbed by the presence of the clathrate cage and show 
that the calculated Raman spectra may be used to determine the concentration and location of the 
enclathrated gas molecules. Relative to the gas-phase structure we identify two effects which are 
responsible for the change in intensity of the enclathrated molecules relative to the gas phase. The 
polarizibility of the surrounding cage acts to increase the Raman spectra of the stretch mode in 
the pentagondodecahedra cage. However, in the lower-symmetry tetrakaidecahedra cage, mixing 
between the hydrogen stretch mode and other optically silent molecular vibrations counteracts 
this effect and accounts for the different Raman intensities observed for the two types of voids. 
We suggest that similar calculations and experiments on the gas hydrates may provide an in situ 
diagnostic tool for determining the amount of natural gas contained within the gas hydrates on the 
sea floor. 

(Some figures in this article are in colour only in the electronic version; see www. iop. org) 

1. Introduction 

Structures containing large voids of free space have been the subject of great scientific interest 
due to their large-scale application in the chemical industry and the possibility for studying 
basic interactions between the host structure and the guests which fill the voids. Examples 
of these cage structures are fullerenes [1,2], clathrate structures such as gas hydrates [3] or 
zeolites. 

Zeolites are of interest because they serve as shape and size selective catalysts and 
molecular sieves. However, the possibility of using these materials as hosts for the synthesis of 
small clusters has only recently been explored [4,5]. Similar to the well known semiconductor 
superlattices, zeolite frameworks provide a method for creating new three-dimensional periodic 
arrays of guest molecules enclosed in the zeolite voids. 

The experimental effort in this area, driven partially by potential applications to nonlinear 
optical devices and solar elements has resulted in several zeolite-based materials, which include 

§ Present address: Center for Computational Materials Science—6392, Naval Research Laboratory, Washington DC 
20375-5000, USA. 
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small semiconductor clusters. Some specific examples are CdS [6], GaP [7] and Se [8] 
clusters. More information about other systems can be found elsewhere in review articles 
[4,5] and references therein. In addition to experimental efforts there have also been theoretical 
studies, which have investigated the structural and electronic properties of zeolites [9,10] or 
the simulation of small silicon clusters in sodalite [11]. Some of the most interesting questions 
about these systems pertain to the guest-guest and guest-host interactions. The guest-host 
interaction seems to be dominant, because in typical zeolites guests are separated by more than 
ten angstroms. The experimentally observed blue shift of the optical absorption threshold [8] 
compared with free clusters suggest similar quantum confinement effects that occur in layered 
semiconductor superlattices, due to changes of electronic states in the system by guest-host 
interactions. 

The present paper will discuss a similar clathrate structure known as melanophlogite. 
Melanophlogite is a naturally occurring, low-density form of silica, which is always found 
to contain some organic matter. The SiC>4 tetraeders of the host form a three-dimensional 
framework consisting of two different kinds of cages. One of these cages is the naturally 
occurring silica equivalent of a C20 fullerene. In fact, melanophlogite was the first known 
example of a silicate framework structure with the pentagonal dodecahedron as a framework 
element [12]. 

The main goal of the present work is to investigate the interesting guest-host interactions 
of the host framework and the methane included in this material. Raman spectroscopy provides 
a non-destructive method for obtaining information about the kind of guests by observing their 
vibrational fingerprints. Furthermore, if the the Raman activity of the guest molecules is 
known, the density of the guests may be determined. Since, density-functional calculations 
provide a cost-effective ab initio means for determining the Raman activity of molecules the 
two methods combined give us a powerful tool for analysing and characterizing the above- 
mentioned structures. 

From a technological standpoint, the secondary goal of this work is to demonstrate, by way 
of example, that techniques similar to those used here may be helpful for obtaining information 
about the concentration and type of natural gas contained within the gas hydrates. One of the 
clathrate structures of the gas hydrates is, in fact, identical to the structure of melanophlogite. 
The work discussed in the following shows that in situ Raman measurements of gas hydrates 
in conjunction with theoretically determined Raman spectra could be used to determine the 
location, type and concentration of such molecules 

In the following sections we provide more information about this not so well known 
material and give experimental and theoretical details. In section 3 we discuss the experimental 
and theoretical details. In section 4 we present and discuss our results and conclusions are 
given in the last section. 

2. Melanophlogite 

Melanophlogite is a white and colourless mineral, which is found only at a few localities 
(Sicily [13], Fortullino [14], Chvaletice [15], Mount Hamilton [16] and Tsekur-Koyash [17]). 
Although melanophlogite is quite rare in nature it has been synthesized at 443 K from an 
aqueous solution of silica acids under a high pressure of different gases [18]. 

This silica polymorph usually contains several guest molecules (e.g. CH4, N2 and CO2) 
in varying amounts. Kamb [12] first suggested that this low-density cubic formf of silica, 
which may also incorporate long, straight-chain hydrocarbons, is isostructural to the cubic gas 

t The reported tetragonal forms, with a doubled unit cell in one direction, will not be discussed here. 
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hydrates [3] of type I. The SiC>4 tetraeders form a three-dimensional framework by sharing 
corners. This framework contains two types of cages: two pentagondodecahedra (cage I) and 
six tetrakaidecahedra (cage II) per unit cell. Figure 1 displays a schematic diagram of the 
crystal structure of three by three unit cells parallel to the [100] direction. The highlighted 
part presents four cages of type I on the corners and two cages of type II in the middle. The 
structure of the smaller cage I shown in figure 2 is well known from recent interest in carbon 
fullerenes. It is the natural occurring silica equivalent of a C20 fullerene. However, due to the 
tetrahedral coordination preferred by Si atoms the cages share faces to satisfy the sp3 bonding. 
The corners are occupied by silicon atoms, whereas the oxygen atoms are located on the middle 
of the edges. The free space within cage I can be approximately described by a sphere-like 
void with diameter d~5.7A and a volume V ~ 97 A3. 

Figure 1. View of three by three unit cells of melanophlogite in the [100] direction. The corners 
of the emphasized section displays four cages of type I and two cages of type II in the middle. The 
lighter atoms are silicon atoms which are connected by oxygen atoms (dark circles). There are no 
guest molecules displayed. 

The structure of cage type II is presented in figure 3. The top and bottom faces are 
hexagons and the remaining faces are pentagons. The free space within can be approximated 
by an ellipsoid with d\ ~ di ~ 5.8 Ä, d-$ ~ 7.7 Ä and a volume of 136 Ä3. An interesting 
feature of cage II is that the stacking of cages lead to nanotube-like structures, which may 
contain long chain-like molecules. The open circular objects seen in figure 1 represent a top 
view of the stacked cages of type II. The entire crystal structure may also be described as a 
three-dimensional array of stacked cages of type II. 

3. Experimental and theoretical details 

3.1. Raman measurements 

Small crystallites of melanophlogite from Furtullino without visible fluid inclusions were 
carefully selected under an optical microscope from Olympus.   The measurements were 
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Figure 2. Cage I consists of 12 pentagonal faces. It is the natural occurring silica equivalent of 
a C20 fullerene. The atoms on the corners are silicon atoms (light circles), whereas the atoms 
between arc oxygen atoms (dark circles). The guest molecule (methane) located inside this cage 
is not shown. 

Figure 3. Cage II has a total of twlcvc pentagonal faces and two hexagonal faces (top and bottom). 
The atoms on the vertices arc silicon atoms (light circles), which are connected to one another by 
bridging oxygen atoms (dark circles). The guest molecule (methane) located inside is not shown. 

performed with the 514 nm line of an Ar+ laser employing a triple-stage Jobin Yvon 
monochromator and a liquid nitrogen cooled CCD for detection. The scattered light was 
measured in subtractive mode. All experiments were carried out at room temperature with 
special care: using low power density of the laser in order to prevent the influence of 
illumination on the measurement results. The Raman spectra shown in figure 4 are typical of 
several obtained from different spots on the crystallite. 

The spectral resolution in the C-H stretching vibration range was about 2 cm"1 due 
to the finite slit width of the spectrometer. Using this value in order to deconvolute the 
measured halfwidths the corrected halfwidths of the two observed CH4 vibration bands are 
about 6 cm^1. 

3.2. Theoretical considerations 

There are several current limitations which make it difficult to perform such calculations 
on periodic systems. First, the system is very large and contains a total of 143-178 atoms 
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Figure 4. Raman spectra of melanophlogite: framework vibrations, CO2 vibrations, N2 vibrations 
and the totally symmetric breathing vibration of the guest molecule methane, CH4. 

depending on how many clathrate voids contain CH4 molecules. Including the guest molecules 
in the void of the cages significantly lowers the symmetry of the unit cell. Second, the short 
C-H bond length would require extremely small muffin-tin spheres for a linearized augmented 
plane wave (LAPW) calculation which implies a very large value of R * kmax. Even without 
this complication all-electron calculations on unit cells of this size are not currently an option. 

Another frequently used numerical method for ab initio calculations of large unit and 
super cells would be a plane-wave expansion of the electronic wavefunctions, and non-local 
pseudopotentials to replace the effect of the core electrons. However, for the particular problem 
we are concerned with here, this approach is numerically very expensive for the following 
reason. The oxygen valence wavefunctions are strongly localized which results in a high 
plane-wave cutoff energy (typically about 60-70 Ryd). Together with the large volume of the 
complete unit cell, this makes plane-wave calculations too expensive. 

There is also a more fundamental reason for using cluster-based models for this study. To 
date, the Raman spectra of periodic systems has only been studied for very simple periodic 
systems. This is primarily due to the problem of dealing with a uniform or extremely long- 
period electric field in another extremely short-period system. The calculation of Raman 
spectra for periodic systems remains an active area of research. 

The calculation of the vibrational spectra of the whole unit cell together with different 
guest molecules by first-principle ab initio methods is currently still beyond present computing 
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possibilities. Therefore, in order to calculate the Raman frequencies and intensities of interest, 
we used some approximations based on experimental observations. The basic assumption 
is that no mixing of the vibrational modes of the framework and of guest molecules occur. 
This assumption is supported by experiment, because the framework vibrations are more than 
2000 cm"1 lower than the investigated totally symmetric 1 A] mode of methane. Further 
possible changes of the molecule geometry due to charge transfer between guests and 
framework is neglected, although we allow for full relaxation of all electronic degrees of 
freedom and we account for breathing of the methane molecule. Using these assumptions 
the influence of the different cages can be considered as a small perturbation of a nearly free 
vibrating molecule. 

Based on x-ray data [12] we generated the unit cell of melanophlogite and removed the 
two different cage types. The dangling bonds were then resaturated with hydrogen atoms. 
Holding the cage atoms fixed we allowed the methane to vibrate. This does not introduce a 
large error because, as already mentioned, the framework vibrations are slow compared to the 
totally symmetric \A\ mode of methane. 

The orientation of methane inside the cage has not been experimentally determined. Due 
to the space available there is no a priori reason for excluding the possibility that the methane 
can rotate within the cage at room temperature. For our calculations we restricted ourselves to 
an orientation of the methane molecule, which was adapted to the symmetry of cage I. There is 
no orientation of the Tj methane molecule which is compatible with the symmetry of cage II, 
therefore we have choosen the same orientation as for cage I. That means that all methane 
molecules would have the same orientation in the entire crystal framework of melanophlogite. 
This special choice certainly is not satisfactionary and could be avoided by using, for example, 
molecular dynamic techniques including the relaxation of the entire unit cell together with the 
included guest molecules. To address this point we carried out some preliminary tight-binding 
calculations allowing for full relaxation of the unit cell and the included methane. The initial 
placement of methane is not a special case for which the forces acting on the molecule vanish 
by symmetry. With the initial placement of methane described above we did not observe a 
rotation of methane during these simulations. The results of these tight-binding calculations 
will not be discussed here, although they agree well with the ab initio results. The use of the 
computationally more demanding ab initio methods was required, because the tight-binding 
method did not allow for the calculation of Raman intensities. 

To determine the changes in the Raman frequencies and intensities, we displaced the 
hydrogen atoms of methane by a small distance (0.05 au) according to the positive and negative 
direction of the normal vibration of the methane A \ mode and calculated the total energy and 
the forces of the corresponding geometry for both cages. Using the information of the forces 
acting on the relaxed free methane placed in both cages allowed for the calculation of the new 
equilibrium geometry of methane in the cages. In order to calculate the Raman intensities we 
applied an external electric field of 0.005 au to our cage structures with the methane as an 
included guest. The total energy for the frequency calculations was converged to 10~6 Hartree 
and for intensities to 10"8 Hartree. 

The calculations were performed using the all-electron, full potential Gaussian-orbital 
cluster code NRLMOL [19]. The potential is calculated analytically on a variational integration 
mesh which allows for the determination of the electronic structure, total energies and Pulay- 
corrected Hellmann-Feynman forces with any desired numerical precision. We used the 
Perdew-Zunger parameterization of the standard Ceperly-Alder [20] functional within local 
density approximation (LDA). A more detailed description of the technique used and of 
computational problems associated with calculation of Raman scattering activities within 
density functional theory can be found elsewhere [21]. 
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4. Results and discussion 

4.1. Raman measurements 

Figure 4 presents the results of Raman measurements of melanophlogite. The vibrational 
spectra shown in figure 4(a) was identified as the framework vibrations of melanophlogite. 
The higher peaks at 727, 810 and 847 cm-1 are not due to melanophlogite but probably due 
to dolomite, which was present in the investigated samples. This observation was supported 
by an absence of these peaks in samples from a different origin. Figures 4(b) and 4(c) are 
associated with the vibrations of CO2 and N2, respectively. Due to the larger halfwidths 
of these peaks than that of free molecules in air, we concluded that these molecules are an 
integral part of melanophlogite. The most interesting results used for further discussion of the 
Raman measurements are displayed in figure (d). The peak found at 2917 cm-1 is located 
at the same position as the totally symmetric A\ mode of methane. Further support that the 
observed vibration is connected with methane comes from the higher peak found at about 
3058 cm-1, which is assigned to be asymmetric stretching T2 mode of methane. The lower 
peak at 2906 cm-1 (A = 11 cm""1) is somewhat unexpected, since the total symmetric mode 
of methane is non-degenerate. 

4.2. Theoretical calculation 

As described above, we calculated the frequencies and Raman activities of the modes of 
methane in both cages. Due to the symmetry compatible orientation of methane in cage I the 
force constant matrix is diagonal for the investigated totally symmetric mode of methane. This 
further supports our chosen orientation, because within our numerical accuracy we found no 
torque components acting to rotate the methane molecule. The case of methane in cage II is 
more complicated, because the normal vibration of the totally symmetric mode of free methane 
is broken in cage II. Therefore our force constant matrix is no longer diagonal, which results 
in a mixing of other modes with the totally symmetric A\ mode. After diagonalization of the 
force constant matrix we found a mixing of the totally symmetric mode with the threefold 
degenerate Ti mode above 3000 cm-1. This mode splits in a single vibrational mode and a 
twofold degenerated mode separated by 9 cm""1. Eventually this could be found in experiment 
as a broad structure, because the unsplit threefold degenerate mode of the methane in cage I 
is found between the split modes of cage II. However, the current available experimental data 
do not allow for reliable investigation of this effect. 

The results including only harmonic effects compared with the calculation of the free 
methane molecule using the same numerical approximations are summarized in table 1. 
Compared with the experimental results all calculated frequencies are slightly too high, which is 
a well known behaviour of LDA calculations. Using the free methane vibrations as a reference 
the Ai mode in both cages is shifted downwards, but by different amounts. The perturbation 
of methane in the smaller cage I is larger, which results in the observed splitting of the totally 
symmetric mode of methane. The calculated splitting of only 3 cm-1 is too small compared 
with the experimentally measured value of 11 cm-1. The previously mentioned tight-binding 
calculations of an entire unit cell of melanophlogite resulted in a splitting of 4.5 cm-1. 

In order to improve the theoretical results we included anharmonic effects in our 
calculations. Using all available energies and forces we fitted the data to a third-order 
polynomial of the total energy as a function of the displacement of the totally symmetric mode. 
Because we are still confined to the subspace of only one normal mode this problem reduces 
to a one-dimensional quantum mechanical problem of a particle in the resulting potential, 
which we solved numerically. This gives an additional splitting of 2 cm-1 due to anharmonic 
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Table 1. Raman frequency a> and activity R of the totally symmetric mode of methane in cages I 
and II compared with free methane including only harmonic effects. 

«(cm"1)      Ä(Ä4amir') 

Free CH4      2934 248 
Cage I 2928 480 
Cage II 2931 153 

effects, which is additive to the harmonic splitting. Repeating the same calculations with 
a fourth-order polynomial lead to the same splitting as previously obtained. Therefore, our 
calculations give a totally splitting of the total symmetric mode of methane in melanophogite 
of 5 cm-1. The agreement with experiment is still not perfect, and we attribute this to the 
approximate configuration of the CH4 and the crystallographic data used for the generation of 
the cages. However, we believe that the qualitative description of this system is satisfactionary. 
The basic interaction between the cage and methane leads to a weakening of the bonding of 
the hydrogens to the carbons, which results in the downward shift of frequencies caused by an 
elongation of the carbon-hydrogen bond. This is an effect that is well known since zeolites 
are used for the cracking of long-chained hydrocarbons. 

In addition to the calculations of vibrational frequencies the NRLMOL code allows for the 
calculation of Raman activities. The results presented in table 1 are, at first sight, confusing. 
Compared with the free molecule, the Raman activity of methane in cage I is enhanced, but 
decreased in cage II. This behaviour can be understood by the observed mixing of the totally 
symmetric A\ mode and the T2 mode above 3000 cm"', which caused by the cage II induced 
broken symmetry. Due to this mixing the Raman activity of the totally symmetric A\ mode is 
decreased and increased for the T2 mode above 3000 cm"1. In the case of cage I this mixing 
does not occur, because cage I and methane share a common set of symmetry operations, 
so that the symmetry of cage I is compatible with that of methane for the totally symmetric 
vibrational mode. 

As the final result we obtained a ratio of Raman activities of 3:1 for cage I and II. Bearing 
in mind that a unit cell of melanophlogite has a cage Ixage II ratio of 1:3, the observed, nearly 
equal, Raman intensities of both peaks are in good agreement with our calculations, assuming 
that the probability of methane as a guest molecule in both cage types is the same. 

5. Conclusions 

We have presented experimental and theoretical results for a vibration of a guest molecule in 
different cage structures. The applied methods are not confined to the discussed sample, but 
should be useful tools for investigations of a broader class of materials such as zeolites or other 
clathrates with guest molecules. The limiting condition for application should always be a 
careful check of the framework and guest interactions. 

The calculations performed here qualitatively explain the splitting of the CH4 symmetric 
vibrational A\ mode that has been experimentally measured. Furthermore, the comparison 
between the calculated Raman-intensity ratios and the experimentally observed ratios suggests 
that, for this sample, the methane molecules occupy the two different types of cages with equal 
probability. 

If such materials could be used to engineer arrays of weakly interacting encapsulated 
molecules or clusters, it would be useful to use Raman spectroscopy to determine the density of 
encapsulants and the relative probabilities of finding a given encapsulant in the different cages. 
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We have shown that the Raman intensities of the encapsulated molecule differ significantly 
from that of the gas-phase molecule and exhibit a sensitive dependence on the cage structure. 
This means that a quantitative determination of the relative populations cannot be achieved 
by borrowing gas-phase intensities. However, density-functional calculations provide a cost- 
effective means for determining how the encapsulant Raman intensities depend on the cage 
and could provide a mean for characterizing future samples. 

Indeed melanophlogite samples from another location lead to experimentally observed 
ratios that are different from those discussed here. It would be interesting if an alternative 
experimental means could be used to confirm that the two samples do indeed have different 
ratios of cage Ixage II methane densities. 

We hope this work will encourage some research on melanophlogite as an interesting 
material for basic studies of guest-host interactions and, possibly, as a means for developing 
arrays of weakly interacting particles. 
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The 14th U.S. National Congress of Applied Mechanics will be hosted by the Department of Engineering Science 
and Mechanics, Virginia Tech, on 23-28 June 2002, and will be held on the campus of Virginia Polytechnic 
Institute and State University (Virginia Tech) in Blacksburg, VA. Virginia Tech is the largest comprehensive 
university (with approximately 25,780 students) in the Commonwealth of Virginia. The College of Engineering 
awards nearly 840 B.S. degrees, 390 M.S. degrees and 175 Ph.D. degrees every year. The Department of 
Engineering Science and Mechanics enrolled 89 graduate students in 1998-99, awarded 15 Masters and 12 Doctoral 
degrees in 1998-99, and had a research expenditure of $6.8M dollars in 1998-99. The graduate program of the 
College of Engineering has been ranked 25th in the country in the 1999 U.S. News & World Report. 

SPONSORS: U.S. National Congress of Applied Mechanics and its sponsoring societies: Acoustical Society of 
America, American Institute of Aeronautics and Astronautics, American Institute of Chemical Engineers, American 
Mathematical Society, American Physical Society, American Society of Testing and Materials, American Society of 
Civil Engineers, American Society of Mechanical Engineers, Society for Experimental Mechanics, Society for 
Industrial and Applied Mathematics, Society for Naval Architects and Marine Engineers, Society of Engineering 
Science, Society of Rheology. 

GOALS: The conference will bring together mechanicians, and provide a forum for exchanging ideas, and 
promoting interaction among them. Scientists and researchers from all over the world are welcome to participate in 
the conference. All areas of applied mechanics, including Smart Materials & Structures, will be covered. Each 
speaker will be allotted 22 minutes for presentation and discussion of the paper. 

ORGANIZING COMMITTEE: Gen. Co-Chairs: E. Henneke (henneke@vt.edu) and R. Batra (rbatra@vt.edu); 
Scientific Prog. Comm. Co-Chairs: F. Hussain (FHussain@uh.edu) and M. Hyer (hyerm@vt.edu). 

SPECIAL SYMPOSIA: Several colleagues have kindly agreed to organize symposia; please see the Conference 
website. Those interested in organizing a symposium should contact a member of the organizing committee. 

ABSTRACT FORMAT AND OTHER INFO: See the conference website www.esm.vt.edu/usncaml4/ 

TRAVEL TO BLACKSBURG: The closest airport is in Roanoke and is 45 miles from the Virginia Tech campus. 
It is presently served by U.S. Airways, Delta, United, and Northwest. Rental cars are available at the airport. A 
limousine service from the airport to Blacksburg and back is also available. The local organizing committee will 
make additional arrangements to facilitate travel between Roanoke Airport and Blacksburg. Information about 
Blacksburg community is available at the website http://www.bev.net/. 

IMPORTANT DATES: 
31 January 2002 (Submission of Abstracts) 1 May 2002 (Deadline for reduced registration fee) 
28 February 2002 (Acceptance/Declination Letters mailed)      23-28 June 2002 (Conference Program) 
31 March 2002 (Preliminary Program mailed) 

MAILING ADDRESS FOR ABSTRACTS: USNCAM14, ESM Dept., MC 0219, Virginia Tech, Blacksburg, VA 
24061, USA; e-mail usncaml4@vt.edu; fax +1 540-231-4574. 

CONTACT FOR INFORMATION ON HOUSING, TRAVEL ETC.: Wanda Hylton, Continuing Education, 
Mail Code 0364, Virginia Tech, Blacksburg, VA 24060, USA; e-mail whylton@vt.edu; tel. +1 540-231-9617; fax 
+ 1 540-231-9886. 

REGISTRATION FEE: $375.00 if paid by 1 May 2002; $450 after 1 May 2002. The registration fee covers the 
book of abstracts, two coffee/refreshment breaks every day of the conference, a reception on 24 June 2002, a 
banquet on 29 June 2002, and admission to all sessions. 

FINANCIAL ASSISTANCE: The organizing committee does not have funds to support even the partial travel of 
any potential participant. 
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